本套 PPT 课件是专为人教版数学一年级上册第四单元第 4 课时“20 以内数的顺序和大小”精心设计的,共包含 26 张幻灯片。其核心目标是助力学生熟练掌握 20 以内数的顺序以及它们之间的大小关系,并能够准确地进行排序。同时,通过多样化的学习活动,如填数、数数、比较等,全方位培养学生的观察力、动手操作能力和语言表达能力。此外,本课还注重引导学生经历从具体情境到抽象思维的过渡,让他们在比较数的大小的过程中逐步构建数学思维。在学习过程中,通过将数学知识与生活实际紧密联系,激发学生对数学学习的兴趣,让他们感受到数学的实用性和趣味性。本套 PPT 课件的内容结构清晰,分为三个主要部分。第一部分聚焦于感知数的顺序。通过借助直尺这一直观的工具,引导学生仔细观察数的排列顺序,并鼓励他们总结其中的规律。直尺上的刻度清晰地展示了数的递增关系,学生可以通过直观的观察发现数与数之间的先后顺序,为后续的学习奠定基础。第二部分旨在加深学生对数序的认识。在初步感知的基础上,通过进一步的引导和练习,强化学生对 20 以内数顺序的掌握,使他们能够更加熟练地运用所学知识。第三部分是达标练习巩固成果。通过设计丰富多样的练习题,让学生在实践中巩固对 20 以内数顺序的掌握,并能够准确辨别 20 以内数的大小。这些练习题形式多样,既包括基础的排序题,也有更具挑战性的比较大小题,能够满足不同层次学生的学习需求,帮助他们将所学知识转化为实际能力。通过本套 PPT 课件的学习,学生不仅能够掌握 20 以内数的顺序和大小关系,还能在学习过程中提升多方面的能力,感受数学的魅力,为后续的数学学习奠定坚实的基础。
这套《人教A版必修第一册 4.2.2 指数函数的图像和性质(第 1 课时)》PPT 课件共 58 页,以“图像先行—性质归纳—应用深化—反思固化”为教学主线,聚焦指数函数的四条核心性质:定义域为 R、值域为 (0, +∞)、恒过定点 (0, 1)、当底数 a1 时函数单调递增且图像“向上爆炸”,当 0a1 时函数单调递减且图像“向下衰减”。课程目标定位于让学生在“看—想—说—用”的完整环节中,既能依据底数范围迅速判断图像走向与关键特征,又能将性质迁移到比较大小、解不等式、实际建模等简单情境中,进一步提升直观想象与逻辑推理素养。课件内容分四大板块展开。第一板块“指数函数的图像”从“研究函数的一般套路”切入:先列表描点、再连线成图、最后由图识性。教师先示范用 GeoGebra 动态演示 y=2^x 与 y=(1/2)^x 的生成过程,随后让学生在坐标纸上同步手绘,强化数形结合体验。关键节点用表格对比自变量 x 与函数值 y 的对应关系,引导学生自主发现“同底相反指数互为镜像”的对称规律,为后续抽象性质奠定直观基础。第二板块“指数函数的性质”在图像感知基础上上升为符号语言。通过“提问—猜想—证明”三步走:先让学生口答“图像为何永居上半平面”,再师生共同完成“若 a1,则任取 x1x2,有 a^{x1}a^{x2}”的单调性证明;随后用红色标记渐近线 y=0,突出值域边界不可达的极限思想。性质梳理以“四句话+一张图”形式凝练,方便学生记忆。第三板块“题型强化训练”设计三类梯度习题:A 组“看图说话”——根据给定图像迅速写出底数范围及增减性;B 组“性质逆用”——利用单调性比较 3^π 与 3^3.14 的大小,或解 0.5^x0.25;C 组“情境建模”——以“药物在血液中浓度衰减”为背景,引导学生用指数函数拟合数据并预测服药间隔。每题配“思路拆解—规范作答—易错警示”三段式点评,确保练得精、悟得透。第四板块“小结与随堂练习”先由学生独立绘制思维导图,串联“定义—图像—性质—应用”四大关键词;教师再展示优秀范例,补充“化同底、借图像、用单调”三大解题策略。最后推送 5 题分层检测(含在线统计),即时反馈掌握情况,并为下一课时“指数函数综合应用”埋下伏笔。整份课件以“图像引领、性质支撑、应用落地、反思升华”的闭环设计,帮助学生在多感官、多层次的学习体验中真正吃透指数函数的本质。
这套《人教A版必修第一册 4.4.2 对数函数的图像与性质(第1课时)》PPT 课件共 47 页,以“图像先行—性质聚焦—迁移应用—反思升华”为逻辑主线,引导学生在“看、说、比、用”的完整循环中掌握对数函数的四条核心性质:定义域(0,+∞)、值域(-∞,+∞)、恒过定点(1,0)、当底数a1时单调递增且图像“缓升”,当0a1时单调递减且图像“缓降”。课程旨在使学生不仅能用符号语言准确表述上述性质,还能借助图像直观比较对数值大小,并在解题中灵活转化“数”与“形”,从而同步发展直观想象与逻辑推理素养,树立牢固的数形结合意识。课件内容分四大板块展开。第一板块“对数函数的图像”首先借助 GeoGebra 动态演示,先回顾指数函数 y=a^x 的图像与特征,再在同一坐标系中同步生成其反函数 y=log_a x 的图像,让学生通过“描点—连线—观察”体验互为反函数的对称美;随后以双列表格式梳理指数与对数函数图像的“定义域/值域互换、单调性一致、渐近线位置对调”等关键差异,为性质探究奠定直观基础。第二板块“对数函数的性质”采用“例题驱动”策略:先给出 log_2 x 与 log_{0.5} x 两组具体数值,引导学生猜想单调区间;再通过代数证明“若 a1,x1x2 ⇒ log_a x1log_a x2”,在严谨推理中完成从感性到理性的过渡;最后以对照表形式将指数与对数函数的四条性质并列呈现,突出“反函数视角”下的内在统一,帮助学生构建系统化知识网络。第三板块“题型强化训练”设置三层梯度:A 层“识图说话”——根据给定图像快速写出底数范围及增减性;B 层“比大小”——结合图像与单调性比较 log_3 5 与 log_3 7、log_{0.4} 2 与 log_{0.4} 3;C 层“情境建模”——以“声音分贝与能量对数关系”为例,让学生利用图像估算能量翻 10 倍时分贝增量,体验跨学科应用价值。每题均配“画图—说性质—得结论”三步策略,确保思路可视化、过程可迁移。第四板块“小结与随堂练习”先让学生手绘“对数函数思维导图”,串联定义域、值域、定点、单调性四大关键词;教师再展示优秀范例,补充“看底数、看真数、看图像”三看口诀。随后推送 5 题随堂检测:前 2 题基础巩固,后 3 题拓展拔高,在线实时统计正确率,实现精准反馈。整份课件以“形”启“思”、以“思”促“用”,帮助学生在图像与符号的往复对话中真正吃透对数函数的本质,养成自觉运用数形结合解决问题的思维习惯。
这套人教A版高一数学必修第一册 4.2.2《指数函数的图像和性质(第2课时)》的PPT课件共43页,旨在帮助学生深入掌握指数函数的图像和性质,并能够灵活运用这些知识解决实际问题。通过本节课的学习,学生将经历“动态演示—猜想—验证—应用”的探究过程,发展数形结合与模型化的思维。课件内容围绕四个板块展开:第一部分:指数型复合函数的单调性这一部分首先复习指数函数的基本概念,帮助学生巩固对指数函数的理解。接着,通过具体的例子,展示了如何比较两个幂的大小。例如,通过比较 2 3和 3 2,引导学生理解指数和底数对幂值大小的影响。此外,课件还对幂函数和指数函数进行了对比,帮助学生清晰地区分这两种函数的性质和图像特征。通过这种对比分析,学生能够更好地理解指数函数的单调性,并掌握如何利用单调性比较幂的大小。第二部分:利用指数函数的图像和性质解决问题在这一部分,课件通过一系列实际问题,展示了如何利用指数函数的图像和性质来解决问题。这些问题包括但不限于求解简单指数方程和不等式。例如,通过求解方程 2 x=8 和不等式 3 x9,学生将学习如何利用指数函数的单调性来快速找到解。课件通过动态演示,帮助学生直观地理解指数函数的图像变化,从而更好地应用这些性质解决问题。这种动态演示不仅增强了学生的视觉理解,还培养了他们的直观思维能力。第三部分:题型强化训练为了巩固学生对指数函数图像和性质的理解和应用能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的指数函数问题,包括比较幂的大小、求解指数方程和不等式等。通过这些练习,学生能够在不同情境中灵活运用所学知识,提升解题能力。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。通过重复练习,学生能够熟练掌握解题方法和技巧,提升解题速度和准确性。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括指数函数的概念、图像特征、性质以及如何利用这些性质解决问题。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从基础概念到实际应用的逐步引导,帮助学生全面掌握指数函数的图像和性质。通过具体的实例和系统讲解,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
本课《4.4.2 对数函数的图像与性质(第 2 课时)》共 53 张幻灯片,定位于人教 A 版高一数学必修第一册。课程以“渐进线”为抓手,引导学生用几何语言精确刻画对数函数曲线的无限逼近特征,在动态演示与静态分析的双重视角中,培养学生的直观想象力和逻辑推理能力;同时借助信息技术平台,让学生亲历数据生成—图像绘制—模型验证的完整过程,体会数学表达的高度简洁与统一,感受数学与信息技术深度融合的时代魅力。整套 PPT 的展开逻辑分为四个板块。第一板块“对数函数性质的综合应用”首先呈现指数函数与对数函数性质的对照一览表,以表格形式唤醒学生对定义域、值域、单调性、对称性、渐近线等要素的记忆,随后精选典型例题,引导学生在复杂情境下灵活调用性质,完成求值、比较大小、解不等式等任务,在“温故”中“知新”。第二板块聚焦“反函数的概念与图像特点”,通过“互为反函数”的对称映射关系,揭示指数函数与对数函数图像关于直线 y=x 的对称本质,并利用动态几何软件演示点、线、面的实时对应,帮助学生建立“函数—反函数—图像对称”三位一体的认知结构。第三板块“题型强化训练”精选来源于生活、科技、经济等领域的真实问题,以分组探究、即时反馈、错因剖析的方式,强化学生运用对数函数模型解决实际问题的能力,突出数学建模的核心素养。第四板块“小结及随堂练习”先由学生自主梳理本节的知识网络与思想方法,教师再用思维导图进行系统归纳,随后安排分层递进的随堂练习,既巩固基础又拔高思维,确保不同层次的学生都能在课堂内获得成就感与获得感。整节课在问题驱动、技术支撑、素养导向的融合路径中,努力实现知识、能力、情感的三维目标统一。
本演示文稿专为人教数学三年级上册第一单元第 4 课时 “立体图形的展开和折叠” 设计,共 34 张幻灯片,以 “让学生通过实践操作与逻辑分析,掌握立体图形(重点为长方体、正方体)展开与折叠的规律,深化空间观念与推理能力” 为核心教学目标,课堂设计注重 “动手实践与思维探究” 相结合 —— 既通过实际操作让学生直观感受立体图形与展开图的转化过程,又通过观察分析引导学生理解内在对应关系,全方位提升学生的数学核心素养。PPT 的第一部分为学习目标和重点难点,清晰界定了本课时的学习方向与突破要点。在学习目标上,核心目标包括三个维度:一是让学生通过实际操作,准确描述长方体、正方体等立体图形的展开与折叠过程,建立 “立体” 与 “平面” 之间的转化认知;二是引导学生理解展开图中各部分(如长方体的 6 个面)与立体图形对应面的关系,能快速识别展开图能否还原成原立体图形;三是在操作与分析过程中,同步培养学生的动手能力、空间想象能力与逻辑推理能力。而重点难点则聚焦于 “掌握长方体和正方体展开图的特征(如正方体 11 种展开图的基本类型)” 以及 “理解展开图中对立面的位置规律(如正方体展开图中‘相间、Z 端是对面’的特点)”,同时突破 “判断复杂展开图能否折叠成完整立体图形” 这一学习难点,为后续教学活动提供明确的目标指引。第二部分是课前导入,以 “生活联结” 为切入点,降低学生的认知门槛。首先,PPT 呈现生活中常见的长方体、正方体物品,如快递包装盒(长方体)、魔方(正方体)、骰子(正方体)、书本(近似长方体)等,让学生直观感受 “立体图形在生活中的广泛应用”,激发学习兴趣;接着,教师引导学生结合前序课时所学,再次观察这些实物的特征,如 “长方体有 6 个面,相对的面大小相等”“正方体 6 个面都是大小相同的正方形” 等,通过提问 “如果把这些包装盒拆开,会变成什么样子?”“拆开后的平面图形还能折回原来的盒子吗?” 引发学生的认知好奇;最后,教师对学生的观察结果进行总结归纳,重申长方体、正方体的基本特征,为后续探究 “展开与折叠” 做好知识铺垫,实现 “从旧知到新知” 的自然过渡。第三部分是核心的学习任务,以 “实践操作” 为核心,通过两种关键方法引导学生探究立体图形的展开与折叠规律。第一种方法是 “折一折”:教师为学生准备长方体、正方体的展开图卡片(包含不同类型,如正方体的 “1 - 4 - 1” 型、“2 - 3 - 1” 型展开图等),让学生以小组为单位动手折叠 —— 先尝试将展开图还原成立体图形,记录折叠过程中 “哪些面相邻、哪些面相对”;再将完整的立体图形拆开,观察展开后平面图形的排列方式,对比不同展开图的异同。通过反复 “折叠 — 展开” 的操作,学生能直观发现 “长方体展开图一定有 6 个长方形(特殊情况有 2 个正方形),正方体展开图一定有 6 个正方形” 的规律。第二种方法是 “找对立面”:在折叠操作的基础上,教师引导学生聚焦 “如何快速判断展开图中哪两个面是相对的”,通过小组讨论总结出实用技巧,如正方体展开图中,“同一行或同一列中,相隔一个面的两个面是对立面”“呈‘Z’字形两端的两个面是对立面”;长方体展开图中,“相对的面形状相同、大小相等,且在展开图中不相邻”。这些方法的总结,能帮助学生从 “直观操作” 过渡到 “规律应用”,提升学习效率。第四部分为练习与巩固,设计了分层递进的题目,兼顾基础应用与能力提升。基础题型以 “判断与匹配” 为主,例如 “给出 5 个图形,判断哪些是正方体的展开图”“将长方体展开图的各个面与立体图形的对应面进行连线匹配”,考查学生对展开图基本特征的掌握程度;提升题型则侧重 “实践与推理”,比如 “给出一个不完整的长方体展开图(缺少 1 个面),让学生从选项中选出能补全展开图的面”“提供一组正方体展开图,要求学生在展开图上标出指定面的对立面”,这类题目需要学生结合 “折一折” 的操作经验与 “找对立面” 的规律,综合运用空间想象与逻辑推理能力,及时巩固课堂所学的核心方法。练习后,教师会针对典型错题进行讲解,通过 “再次演示折叠过程” 或 “画图分析对立面关系”,帮助学生纠正认知偏差,强化知识记忆。第五部分是知识总结和课后作业,实现 “课堂知识系统化” 与 “课后延伸深化”。知识总结环节,教师会带领学生梳理本课时的核心内容:一是回顾长方体、正方体展开图的特征及折叠还原的关键步骤;二是重申 “找对立面” 的实用规律;三是强调 “立体图形与展开图是‘一体两面’,展开是‘立体变平面’,折叠是‘平面变立体’” 的核心关系,帮助学生构建完整的知识框架。课后作业延续 “基础 + 拓展” 的设计思路:基础作业注重 “生活应用”,例如 “回家找一个长方体或正方体包装盒,先将其拆开画出展开图,再尝试按展开图折回原包装盒,记录操作过程中遇到的问题”;拓展作业侧重 “能力提升”,比如 “用硬纸板制作一个正方体展开图(选择自己喜欢的展开图类型),并在相对的面上画出相同的图案,折叠后验证图案是否对应”,这类作业既能让学生在实践中巩固所学,又能进一步发展空间观念与动手能力,为后续学习更复杂的立体图形知识打下坚实基础。
这份PowerPoint由五个部分构成。第一部分内容是学习目标,主要包括课程标准和课时目标要求。第二部分内容是引入新知和新课探究,这一部分首先展现了与本堂课内容有关的问题,引导学生思考,其次是新知识的总结,最后对特例情况进行简要说明。第三部分内容是应用新知,这一部分主要包括巩固练习和变式练习,同时呈现了做题的方法规律。第四部分内容是课堂小结。第五部分内容是作业布置和答案。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,教师引导学生了解生活中的函数图象。第二部分内容是素养目标,学生首先能够输出抛物线的开口方向、对称轴和顶点,其次可以理解两种抛物线之间的联系,最后会画二次函数的图象。第三部分内容是探究新知,这一部分主要包括二次函数图象的画法、二次函数的性质、二次函数的性质的应用、二次函数的图象及平移。第四部分内容是链接中考和课堂检测。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生们首先能够说出抛物线的特点,其次可以掌握抛物线的画法,最后能够识别出我们生活中有关二次函数的图象。第二部分内容是探究新知,这一部分主要包括二次函数的图象和性质、比较函数值大小的方法点拨、二次函数之间的关系和应用。第三部分内容是课堂检测,这一部分一方面展示了四道基础巩固题,另一方面是对能力提升题和拓广探索题进行展示。第四部分内容是课后小结和课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对二次函数的平移方式进行介绍。第二部分内容是素养目标,学生首先能够说出有关抛物线的相关知识,其次可以理解二次函数之间的联系,最后能够画出函数的图象。第三部分内容是探究新知,这一部分主要包括二次函数的图象和性质、二次函数的平移和应用、平移方式的方法点拨、抛物线的特点。第四部分内容是巩固练习和链接中考。
这份PPT由四个部分组成。第一部分内容是回顾旧知和导入新知,此模板首先展示了二次函数性质的有关图表,其次引导学生通过二次函数的性质来导入所学新知。第二部分内容是素养目标,学生们一方面能够根据所给的自变量的取值范围来画二次函数的图象,其次可以求出二次函数一般式的顶点坐标和对称轴。第三部分内容是探究新知,这一部分一方面可以掌握配方的方法及步骤,另一方面是对配方后的表达式进行介绍。第四部分内容是课堂检测和小结。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,教师引导学生思考用待定系数法来求函数的解析式。第二部分内容是素养目标,学生一方面能够应用三点式、顶点式、交点式求二次函数的解析式,另一方面会用待定系数法求二次函数的解析式。第三部分内容是探究新知,这一部分主要包括用不同的方法求二次函数的解析式以及求证关键,同时展示了求证的步骤。第四部分内容是链接中考和课堂检测,其中包括基础巩固题和能力提升题。
这是一套精心设计的人教版数学一年级上册第二单元 “6~10的认识和加减法” 单元复习课件,共包含 31 张幻灯片。本课件的主旨在于助力学生熟练掌握 6~10 各数的数数技巧,能够准确运用这些数字来表示物体的数量、事物的顺序以及位置等信息。同时,通过本课程的深入学习,学生将初步领略到数学与日常生活的紧密相连,从而感受到学习数学、运用数学知识的乐趣,进而提升解决生活中简单问题的能力。整套课件内容丰富,共分为六个板块。第一板块为学习目标,清晰地阐述了本单元复习课所要达成的学习目标,为学生的学习指明方向。第二板块聚焦于重点难点,帮助学生明确学习的关键所在。第三板块是单元知识框架,借助思维导图这一直观的形式,帮助学生梳理本单元的知识脉络,使学生对整个单元的知识体系有更清晰的认识。第四板块为知识点梳理,详细回顾了本单元的各个知识点,为学生提供了一个系统的复习平台。第五板块是重难点精讲,通过深入分析例题,帮助学生更好地掌握知识中的重点和难点内容。第六板块为高频考点精练,通过有针对性的练习,巩固学生对知识点的掌握,提高学生的解题能力。
这是一套精心设计的人教版数学一年级上册第一单元 “5 以内数的认识和加减法” 的单元复习 PPT 课件,总共包含 34 张幻灯片。本课件旨在帮助学生系统回顾本单元的核心知识,包括数的读写、数的顺序和大小比较、基数与序数的含义区分、数的组成等。通过多样化的复习活动,课件致力于培养学生的自主学习能力、归纳总结能力以及解决实际问题的能力,为学生提供一个全面且有效的复习平台。课件内容分为六个部分。第一部分是学习目标,清晰地阐述了本节课的复习重点,让学生明确学习的方向和目标。第二部分聚焦于重点和难点,帮助学生精准把握本单元的关键知识点,确保学生能够理解并掌握最重要的内容。第三部分是单元知识框架,通过思维导图的形式,直观地呈现本单元的知识脉络,帮助学生构建清晰的知识体系,使学生能够从整体上把握本单元的知识结构。第四部分为知识点梳理,详细讲解了本单元的各个知识点,包括数的读写、数的顺序、大小比较、基数与序数的含义、数的组成等,为学生提供了一个系统且全面的复习指南。第五部分是重难点精讲,通过具体例题的分析,帮助学生深入理解并掌握重点和难点知识,通过实例讲解,让学生能够更好地将理论知识应用到实际问题中。第六部分是高频考点精练,通过有针对性的练习题,帮助学生巩固本单元的知识,提高解决实际问题的能力,让学生在练习中加深对知识的理解和掌握,提升数学素养。通过这套课件,学生不仅能够系统地复习本单元的知识,还能够在多样化的复习活动中提升自主学习和解决问题的能力,为后续的数学学习奠定坚实的基础。
这套和谐新农村PPT动态模板使用了丰收的麦田背景,在金黄的麦田上农民们正忙碌着丰收,脸上露出喜悦的笑容。PPT一共36页,包含了多种图表展示和完整的SWOT分析,并用素菜、农产品、水果作为PPT的点缀,整体界面设计充满了农村的气息。
大自然是一位艺术家,把地球的自然环境雕刻的绚丽多彩,鬼斧神工般的改造着大自然的地形、地貌和自然风光,张家界自然奇特的山石风光独一无二,桂林甲天下的自然山水风光。中国的自然环境是多变的,地形、地势是多样的。这套简约风格的八年级上册地理教学中国自然环境之地形和地势PPT模板素材,了解中国多彩多样的自然环境和地理知识。
客服工作计划和目标ppt,适合各大公司或企业就工作目标管理操作使用。我们在开展任何一项工作时,都必须先对该项工作或任务进行一个目标的确定,进行一个计划安排,这样才能有据可依,达到预期的效果。企业中一项工作的目标指的是所有人对这项工作期望的成果,所有人向着这个期望的成果去努力,企业目标指的是企业在开展这个工作时分析企业内外部的各项因素与条件,确定企业各项经济活动的发展方向和奋斗目标。
人作为一种哺乳动物,需要向外界吸收一定的食物才能促进人体的生长和基本营养物质的需求。人对营养物质的需求是通过消化道把食物进行消化和吸收。食物是通过消化道进入人体,通过消化系统“各部门”的操作运转,最终将营养物质输送给人体,使人体获得营养和能量。《消化和吸收》PPT课件模板,了解人体消化器官及先关的理论知识。
PPT模板展示了关于解读提高保障和改善民生水平的相关内容。民生问题是政府工作的重要方向,习近平总书记对民生问题的建设作出了高度的思想指导,提出要“提高保障和改善民生水平”,深入学习这一指导思想是让思想得以落实的首要步骤。这套关于解读提高保障和改善民生水平的PPT模板,分四个部分对该指导精神进行了详细解读,有利于指导精神的宣传扩大,帮助观众对指导精神有正确、具体的认识,有利于指导精神的具体落实,进而帮助我国民生水平得以提高和改善。
农业是国民经济的基础,是一个国家稳定发展的根本。在闭幕不久的党的十九届五中全会 上,对我国的农业发展战略提出了高瞻远瞩的指导方针,学习并贯彻党的十九届五中全会中关于提高农业质量效益和竞争力的精神,是当下不可轻视的重要工作。这套学习十九届五中全会精神中关于提高农业质量效益和竞争力部分的PPT模板素材,对会议精神进行了详细的解读,为工作指明了具体的方向,通过学习,能
PPT全称是PowerPoint,麦克素材网为你提供和井冈山会师有关的PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。