该演示文稿以幻灯片的形式分四个部分介绍了excel公式和函数的使用,方便我们在使用PowerPoint时更好的了解常用的公式和函数。PPT模板的第一部分是使用的公式和函数,介绍了一些常用的公式和函数。第二部分是公式中的引用设置,介绍了引用单元格或单元格区域、相对引用、绝对引用、混合引用等内容。第三部分是公式中的错误与审核,介绍了追踪导致公式错误的单元格、追踪产生循环引用的单元格等内容。第四部分是数组公式及其应用,介绍了数组公式的建立方法和使用规则。
该演示文稿以幻灯片的形式介绍了数字孪生技术及应用的内容,方便主讲人在使用PowerPoint时更好的介绍数字孪生技术的概念及应用。PPT模板的第一部分介绍了传统制造和智能制造的区别、传统IT和New的区别等内容。第二部分介绍了数字孪生的提出、数字孪生的概念、数字孪生学术研究、数字孪生工业应用等内容。第三部分介绍了数字孪生技术在产品全生命周期的应用、数字孪生十大领域应用探索等内容。第四部分介绍了数字孪生推动仿真行业发展、数字孪生技术成为智能制造的基本要素、数字孪生引领智慧城市建设等内容。第五部分介绍了数字孪生技术的重大意义。
PPT模板从三个部分来展开介绍关于《导数在研究函数中的应用》的教学内容。PPT模板的第一部分通过图表的方式阐述了函数的导数与其单调性之间的关系。第二部分引导学生从个别函数图像推广得到一般的函数图像,并总结了函数的导数与增函数和减函数之间的关系。第三部分介绍了函数的极值的定义以及其相关注意事项,并阐述了函数的极值和函数的导数之间的关系。
PPT模板通过采用知识的讲解结合例题的练习的方法帮助学生掌握《函数模型及应用》的基础知识。PPT模板首先是函数相关知识的简要阐述,让学生理解什么是函数的零点以及函数零点的判定。然后通过列表的方式直观展示出二次函数的图像与零点的关系,引发深入思考。最后介绍二分法的定义和用二分法求函数零点近似值的步骤,步骤讲解非常详细到位。在教学的最后让学生基于获取的知识来对不同提醒进行分析与解答从而进行知识的巩固与检验。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
本演示文稿为基于 PowerPoint 制作的数字孪生技术及应用专题培训 PPT 模板,共包含 25 张幻灯片,围绕数字孪生这一核心技术,从技术本质、发展背景、应用场景到产业价值展开系统性讲解,为培训受众构建起完整的知识框架。数字孪生技术的核心价值在于通过数字化手段,将物理设备的全维度属性精准映射至虚拟空间,构建起与物理实体实时联动、虚实交融的数字化镜像。这一技术突破打破了传统物理世界与数字世界的壁垒,为优化产品设计、提升制造效率、创新服务模式提供了全新路径,成为驱动产业数字化转型的关键支撑。演示文稿通过五大核心板块层层递进,实现对数字孪生技术的全方位解析。第一板块 “NEW 制造与 NEW IT” 作为技术铺垫,深入剖析信息时代下制造业的发展逻辑变革,系统解读以物联网、大数据、人工智能为代表的新一代信息技术核心特征,阐明制造领域与信息技术深度融合的必然趋势,为后续数字孪生技术的引入奠定理论基础。第二板块聚焦数字孪生技术本身,从制造领域物理信息融合的核心需求切入,追溯数字孪生的技术提出背景,精准界定其核心概念内涵,并结合典型案例解析数字孪生在工业场景的基础应用模式,让受众快速把握技术本质。第三板块拓展至应用场景维度,全面梳理数字孪生在十大重点领域的应用实践与创新探索,通过多领域案例展现技术的普适性与赋能价值。第四板块聚焦产业发展层面,分别从推动仿真行业迭代升级、成为智能制造核心要素、引领智慧城市建设三大维度,剖析数字孪生对产业生态的重构作用,揭示技术与产业融合的深层逻辑。第五板块则回归价值升华与未来展望,总结数字孪生技术在产业变革中的核心意义,预判技术发展趋势与应用拓展方向,为受众提供前瞻性视角。整套 PPT 逻辑清晰、层次分明,既覆盖技术理论又结合实践案例,为数字孪生技术培训提供了全面且专业的内容支撑。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于销售法则的具体内容。PPT模板内容第一部分主要向我们详细的介绍了FABE法则的定义以及FABE法则的具体内容。第二部分主要向我们详细的解析了FABE法则在销售领域的具体应用。第三部分主要向我们详细的介绍了一些企业FABE法则的应用实例,并向我们讲解了FABE法则的优势和未来竞争潜力。
这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是函数的导数与函数的单调性之间的关系。PPT的第二个部分向我们介绍的是观察函数的图像变化等等内容。PPT的第三个部分向我们介绍的是讲解函数等等内容。PPT的第四个部分向我们介绍的是极值函数与导数之间的辩证关系等等内容。PPT的第五个部分向我们介绍的是课堂小结。PPT的第六个部分向我们介绍的是板书设计。
这套人教A版高一数学必修第一册 3.4《函数的应用(一)》的PPT课件共70页,旨在帮助学生深入理解函数模型在实际问题中的应用,并掌握用函数模型解决实际问题的基本步骤。通过具体实例,引导学生自主探究函数模型的应用,激发学生对学习数学的兴趣,培养学生的数学思维能力和应用能力,让学生感受到数学在实际生活中的广泛应用。课件内容围绕四个板块展开:第一部分:分段函数模型的应用这一部分通过具体实例,帮助学生了解解决实际问题的一般步骤,包括审题、建模、求模、还原。例如,通过分析出租车计费、阶梯电价等实际问题,学生将学习如何将复杂问题分解为多个阶段,并用分段函数进行建模。通过具体的解题步骤,学生能够掌握如何根据实际情境选择合适的函数形式,如何求解函数模型,并将结果还原到实际问题中。这种系统化的解题方法不仅帮助学生理解分段函数的应用,还提升了他们的逻辑思维能力。第二部分:用函数模型解决实际问题在这一部分,课件通过一系列实际问题,展示了如何用函数模型解决实际问题。这些问题涵盖了经济、物理、生物等多个领域,如成本与收益分析、物体运动轨迹、种群增长等。通过具体的函数模型(如一次函数、二次函数、指数函数等),学生将学习如何根据问题的特征选择合适的函数类型,如何通过函数模型进行预测和决策。这些实例不仅帮助学生理解函数模型的多样性,还展示了数学在不同领域的广泛应用。第三部分:题型强化训练为了巩固学生对函数模型的理解和应用能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的函数模型,包括分段函数、一次函数、二次函数、指数函数等,帮助学生在多样化的题目中灵活运用所学知识。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。通过重复练习,学生能够熟练掌握解题方法和技巧,提升解题速度和准确性,增强对函数模型应用的掌握。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括分段函数模型的应用、用函数模型解决实际问题的基本步骤等。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从具体实例到系统总结、从理论到实践的逐步引导,帮助学生全面掌握函数模型的应用。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
这套总计 75 张幻灯片的《4.5.3 函数模型的应用》PPT 课件,对应人教 A 版高一数学必修第一册,旨在引领学生综合运用函数图像、方程、不等式及信息技术,从实际问题中抽象变量关系,求出未知参数、最值或预测值,并完整体验“情境—假设—建模—求解—检验—解释”的闭环流程,从而切实提升数学建模能力与数据分析素养。课件以“问题情境驱动、技术深度介入、反思及时跟进”为主线,层层递进地设置四大板块。首板块“已知函数模型解决实际问题”精选人口增长、药物代谢、金融复利等典型案例,引导学生辨析一次、二次、指数、对数及分段模型的适用边界,借助表格、图像与代数运算多维度解析模型参数的现实意义,让学生在“拿来就用”的过程中体会函数语言的精准与高效。第二板块“建立适当的函数模型解决实际问题”以“共享单车投放优化”“温室番茄产量预测”等任务为载体,系统呈现建模六环节:提炼变量、作出假设、选择函数、建立方程(不等式)、技术求解、回归检验;教师示范如何用 GeoGebra 或 Excel 进行数据拟合与残差分析,学生则在拆解步骤中领悟“模型不是越复杂越好,而是越合适越好”的建模哲学。第三板块“题型强化训练”围绕交通流量、电商促销、环境降解等跨学科情境,设计“填空—选择—开放”三级梯度练习,鼓励小组合作完成“数据采集—模型选择—误差评估—结果汇报”的完整链条,在反复迭代中固化技能、拓展思维。第四板块“小结及随堂练习”先让学生用思维导图自主梳理“模型选择—求解技术—结果解释—反思改进”四大关键词,教师再补充“过度拟合、灵敏度分析”等高阶视角,随后通过分层随堂练习即时检测:基础层聚焦模型识别与参数求解,提高层则要求依据误差容忍度反向调整函数形式并给出经济或科学建议,确保不同层次学生都能把本节习得的建模策略迁移至新的现实场景,实现知识、能力与责任意识的同步跃升。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第三课时,聚焦“两个一次函数图像的交点”这一核心,引领学生从“看图说话”走向“借图解题”,体会交点背后的实际意义。课堂流程简洁而递进:情境导入—新知探究—典例变式—课堂小结。“情境导入”抛出学生熟悉的“租车比价”场景:A公司收固定起步费加每公里租金,B公司免起步费但单价略高。屏幕同时呈现两家公司的路程—费用折线图,教师提问:“什么时候两家价钱相同?哪段路程选哪家更划算?”生活化悬念瞬间点燃探究欲望,学生直观发现“两条线交叉”即为关键节点,自然引出本课核心——两个一次函数图像交点的实际含义。“新知探究”分三步走:①读图——用GeoGebra动态显示y=k₁x+b₁与y=k₂x+b₂的交点,学生眼见横坐标x₀使两函数值相等;②释义——教师引导得出“交点横坐标即两方案费用相等时的路程,纵坐标即此时的共同费用”,把抽象的‘解方程组’转化为可视的‘两线相遇’;③决策——拖动x轴上的动点,左侧y₁y₂、右侧y₁y₂,学生立刻体会“哪条线低就选哪家”的优化思想,实现“交点分界、左右比价”的建模思路。“典例变式”采用“一景三问”:给出“水费阶梯计价”双段折线图,先求交点坐标,再解释交点含义,最后设计用水量使费用最低,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求用双图像法与代数法并列求“两车队运费相等”的临界点,实现“情境→图像→方程→决策”的完整闭环。结课用“思维导图快闪”:两直线→交点→横坐标相等→实际意义四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“读交点”练习,B层观察家用水电费账单,绘制两段计价直线并求交点,说明如何用水用电最省钱,把课堂所学搬回家。整套课件通过“动态交点—即时释义—左右比价”的闭环设计,不仅让学生真正掌握“两线交点=方程组的解=现实决策临界点”的核心思想,更在“看图→找点→释义→择优”的反复实践中,深刻体会数形结合的魅力,为后续学习不等式组、线性规划奠定坚实的模型与思维双重基础。
PPT主要展示了餐厅厨房5S管理应用培训的主题内容。PPT的整体色调以黑色、白色以及亮黄色为主,将咖啡杯、餐桌、冰淇淋、各式各样的餐厅场景、厨师正在炒菜的形象以及与餐厅厨房有关的图片作为主要装饰物,给人以简洁生动之感。PPT的主要内容包括餐饮厨房5s制度以及5s管理应用这两个部分。旨在让听众能够对5S管理有更加全面的认识,将5S制度落实到自己的工作中。
该演示文稿介绍了5W2H工作分析法的内容,以幻灯片的形式呈现,方便主讲人在使用PowerPoint时更好的解释5W2H的原理。PPT模板的第一部分简要的介绍了5W2H分析法的来历以及优势。第二部分主要分析了5H2W的含义以及特点。第三部分主要介绍了5W2H的主要利用方式和应用步骤。第四部分主要介绍了案例引入、任务分配、案例分析等方面的内容。这套PPT模板的内容安排得详略得当,文字也通俗易懂。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于医用耗材精细化管理课件的相关内容。PPT模板内容第一部分是有关于医用耗材管理的现状。第二部分是有关于医用耗材精细化管理的体系构建。第三部分是有关于医用耗材采购精细化管理的具体内容。第四部分是有关于医用耗材质量控制与风险管理的具体内容。最后一部分是有关于医用耗材的总结回顾。
这份由二十二张幻灯片构成的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第3课时“一次函数在计费问题中的应用”量身定制。课程以“复习—探究—巩固—小结”四步递进,旨在让学生把“一次函数”从纸上的符号变成生活里的“计费神器”。开篇“知识回顾”用快闪方式唤醒记忆:教师抛出y=kx+b的解析式,学生口答k与b的现实意义,随后屏幕滚动呈现“斜率即单价、截距即起步价”的口诀,为后续应用奠定概念锚点。 进入“新知探究”,课件切换到课本例题“出租车计价”:起步价10元含3公里,之后每公里2元。学生分组填表记录里程x与车费y,发现3公里后“每多1公里,多2元”,变化率恒定,教师顺势引导列式y=2(x−3)+10,化简得y=2x+4,学生亲眼看到“一次函数=计费规则”的诞生过程。紧接着头脑风暴:水费阶梯、快递超重、共享充电宝计时……每组选取一个场景,现场测量数据并写出解析式,派代表登台讲解,台下同学用点赞贴纸投票“最会省钱方案”,课堂瞬间化身“计费创意市集”。 “基础巩固”分层推进:A层直接代入解析式求费用;B层给出预算反推可行驶最大里程,需解一元方程;C层引入“两段计价”真题,要求写出分段函数并画图像,平板实时生成正确率热力图,教师针对红区错误现场“开刀”。 结课用“电梯演讲”——30秒说清一次函数在计费里的作用,弹幕滚成词云;作业分两层:A层完成教材配套练习,B层记录家庭本月电费单,按“阶梯单价”写出一次函数模型并预测下月费用,把课堂所学搬回家。整套课件通过“生活场景—数据提炼—模型建构—即时反馈”的闭环设计,不仅让学生真正理解“一次函数就是单价数量+起步价”的计费本质,更在“算钱、省钱、比方案”的实战中,显著提升模型意识与应用能力,为后续学习分段函数、不等式及优化问题奠定坚实的方法与情感双重基础。
这份共十六张的PPT课件,紧扣北师大版八年级上册第四章《一次函数的应用》第一课时——“确定一次函数的表达式”,以“会看图、会设式、会求参”为核心目标,引导学生在图像与情境中还原解析式,深刻体验数形结合的魅力。课堂仍循五步展开:温故—情境—新知—典例—小结。“温故复习”用快闪方式唤醒记忆:正比例函数y=kx的图像必过原点,一次函数y=kx+b的斜率k定方向、截距b定位置,学生边口述边用手势比斜率,教师顺势板书“两点定一线”,为后续求参埋下伏笔。“情境导入”给出两条已画直线:y=2x+1与y=-x+3,让学生抢答“谁先画到y轴1?谁与x轴交于-3?”在温习图像特征的同时,教师追问:“如果反过来,已知直线经过(0,4)和(2,0),你能写出它的解析式吗?”问题一转,引出本课核心任务——由图或情境确定表达式。“新知探究”分两步走:先特殊后一般。①确定正比例函数:给出图像过点(3,6),学生口算k=2,写出y=2x,归纳“一个非原点即可定k”;②确定一次函数:给出图像与y轴交于-1,且过点(2,3),学生先写y=kx-1,再代入求k=2,归纳“两点或一点加截距可定k、b”。教师随即用GeoGebra动态演示:拖动两点,解析式实时变化,学生眼见“点动式动”,深刻感受坐标与参数的对应关系。“典例巩固”采用“一题三问”:给出一次函数图像与坐标轴两交点,先写解析式,再求x=-1时的函数值,最后判断点(m,m+2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,给出实际情境“租车计费”,要求先设y=kx+b,再利用两组数据求参,实现“情境→图像→解析式”的完整闭环。结课用“思维导图快闪”:两点坐标→列方程组→解k、b→写解析式四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“由图求式”练习,B层拍摄家中电表读数,记录两次时间与示数,写出一次函数模型并预测下次读数,把课堂所学搬回家。整套课件通过“动态演示—即时求参—情境回归”的闭环设计,不仅让学生真正掌握“两点定一线”的求法,更在“看图像→写解析式→回代检验”的反复实践中,深刻体会数形结合思想,为后续学习一次函数与方程、不等式综合应用奠定坚实的模型与思维双重基础。
这是一套“数学第五章三角函数中函数 y=Asin(ωx+ψ)的图像第二课时课件 PPT”模板,该 PPT 共有 56 张幻灯片,整个演示文稿分为三个主要部分。在第一部分,模板通过具体的题目讲解和分析,引导学生逐步掌握函数 y=Asin(ωx+ψ)的图像绘制方法。特别地,模板详细展示了如何使用“五点法”来画出该函数的图像。在文字讲解之后,模板还通过图形步骤的展示,使学生能够更加直观地理解每个步骤,确保学生能够清晰明了地掌握图像绘制的全过程。这种图文结合的方式有助于学生更好地理解和记忆图像绘制的方法。第二部分,模板讲解了函数 y=Asin(ωx+ψ)在匀速圆周运动中的应用。这一部分首先通过具体的例题讲解来引入应用背景,帮助学生理解函数在实际问题中的作用。随后,模板展示了几道相关题目,先引导学生自主完成,再进行探究分析。最后,模板引导学生发表自己的感悟,总结所学知识。这种设计不仅帮助学生理解函数的应用,还通过自主探究和总结,提升了学生的自主学习能力和思维能力。第三部分是题型强化训练环节。这一部分主要围绕求三角函数的解析式相关题型展开练习。通过大量的题目训练,学生可以在实践中巩固所学知识,进一步提升解题能力。这些题目不仅涵盖了基础知识,还通过公式的变化引导学生进行发散思维,帮助学生学会举一反三,从而更好地应对各种题型。整个演示文稿包含了大量的题目,这种设计有利于学生通过题目来探究学习新知。在讲解分析题目的过程中,学生不仅能够巩固所学新知,还能通过题型和公式的多样化变化,提升自己的发散思维能力。这种教学设计符合学生的认知规律,能够有效帮助学生系统地学习函数 y=Asin(ωx+ψ)的图像及其应用,为后续的学习打下坚实的基础。
PPT模板从七个部分来展开介绍关于金字塔原理解读及运用培训的相关内容。PPT模板的第一部分介绍了金字塔原理的作者的相关信息。第二部分介绍了阐述了金字塔原理的含义。第三部分介绍了横向思维组织的四种逻辑顺序。第四部分阐述了中心思想的TOPS原则的具体内容。第五部分解释了MECE原则的含义。第六部分介绍了SCQA基本结构的详细内容。第七部分阐述了金字塔原理的四项基本原则以及三个代表。
本套关于提高影像诊断符合率 PDCA 应用培训的演示文稿共 19 张幻灯片,系统讲解了 PDCA 循环在提升影像诊断质量中的具体应用,为医务人员掌握质量管理工具、提高影像诊断符合率提供了全面指导。PDCA 作为一种成熟的管理方法,在我国各领域管理工作中均有广泛应用,其对于提升质量与管理水平的显著效果已得到充分验证。在医疗影像诊断领域,熟练运用 PDCA 这一管理工具开展质量改善工作,是医务人员解决诊断问题、提升诊断精准度的关键。通过科学收集影像诊断过程中的各类影响因素,借助管理工具筛选出主要原因,进而针对性地提出解决方案并落实具体措施,能够实现影像诊断符合率的显著提升,为患者提供更可靠的诊断结果。这份 PowerPoint 由三个紧密关联的部分构成。第一部分聚焦 PDCA 的核心内容,为整个培训奠定理论基础。该部分首先清晰呈现了 PDCA 循环的 4 个阶段(计划、执行、检查、处理)和 8 个步骤,让医务人员对 PDCA 的运行逻辑有全面认识;其次深入分析了影像诊断中常见的影响原因,以及识别主要因素的科学方法,帮助医务人员精准定位问题根源。第二部分详细解读 PDCA 的不同阶段,指导医务人员把握各阶段的实施要点。其中,先介绍实施阶段的具体操作要求,包括如何将制定的计划转化为实际行动;再阐述处理阶段的核心任务,即总结经验教训、将有效措施标准化;最后简要说明 PDCA 应用过程中的注意事项,确保循环过程规范有序。第三部分重点阐述解决影像诊断问题的方法和措施,从多维度提供实践方案。该部分首先呈现了优化后的相关制度和流程,为影像诊断工作提供标准化指引;其次强调人员和设备的准备工作,包括提升医务人员的专业技能、确保设备处于良好运行状态;最后关注环境因素对影像诊断的影响,提出改善诊断环境的具体建议,全方位为提高影像诊断符合率提供保障。整套演示文稿逻辑清晰、内容实用,为医务人员开展 PDCA 应用实践、提升影像诊断符合率提供了兼具理论性和操作性的培训素材,对于推动影像诊断质量持续改进具有重要意义。
这份演示文稿主要从两个部分对化学生活应用进行具体讲解。第一部分是绿色化学相关应用的介绍,这一部分主要通过分析当今人们生活水平的需求以及各类生产活动规模和周期的变化,介绍了绿色化学当今的发展趋势。第二部分是绿色化学在生活中的应用,主要包括大气污染治理中的应用、水污染治理中的应用、绿色能源的应用和食品中的应用。
PPT全称是PowerPoint,麦克素材网为你提供excel函数应用培训PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。