这份PowerPoint由四个部分构成。第一部分内容是导入新知,教师引导学生了解生活中的函数图象。第二部分内容是素养目标,学生首先能够输出抛物线的开口方向、对称轴和顶点,其次可以理解两种抛物线之间的联系,最后会画二次函数的图象。第三部分内容是探究新知,这一部分主要包括二次函数图象的画法、二次函数的性质、二次函数的性质的应用、二次函数的图象及平移。第四部分内容是链接中考和课堂检测。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对二次函数的平移方式进行介绍。第二部分内容是素养目标,学生首先能够说出有关抛物线的相关知识,其次可以理解二次函数之间的联系,最后能够画出函数的图象。第三部分内容是探究新知,这一部分主要包括二次函数的图象和性质、二次函数的平移和应用、平移方式的方法点拨、抛物线的特点。第四部分内容是巩固练习和链接中考。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生们首先能够说出抛物线的特点,其次可以掌握抛物线的画法,最后能够识别出我们生活中有关二次函数的图象。第二部分内容是探究新知,这一部分主要包括二次函数的图象和性质、比较函数值大小的方法点拨、二次函数之间的关系和应用。第三部分内容是课堂检测,这一部分一方面展示了四道基础巩固题,另一方面是对能力提升题和拓广探索题进行展示。第四部分内容是课后小结和课后作业。
这份演示文稿主要从四个部分对实际问题与二次函数第三课时进行详细展开。首先是导入新知,这一部分主要介绍了二次函数的类型、建立平面直角坐标系解答生活中的抛物线形问题、建立二次函数模型解决实际问题、利用二次函数解决运动中抛物线型问题。第二部分是链接中考,主要展示了一些与中考相关的题目。第三部分是课堂检测部分。第四部分是课堂小结和课后作业部分。
这份演示文稿主要从四个部分对实际问题与二次函数进行详细展开。第一部分是导入新知和素养目标的介绍,引出今天的学习内容。第二部分是探究新知,主要引导学生探究二次函数与几何图形面积的最值,利用二次函数求几何图形的面积的最值。第三部分是课堂检测部分。包括填空题、应用题以及拓展题。第四部分是课堂小结和课后作业部分。
这份演示文稿主要从四个部分对实际问题与二次函数第二课时进行详细展开。第一部分是导入新知,主要用日常生活中的例子来引出二次函数这一概念。第二部分是探究新知,主要介绍了利润问题中的数量关系、限定取值范围中如何确定最大利润。第三部分是课堂检测,包括基础巩固题、能力提升题以及拓广探索题。第四部分是课堂小结和课后作业。
这份PPT由四个部分组成。第一部分内容是回顾旧知和导入新知,此模板首先展示了二次函数性质的有关图表,其次引导学生通过二次函数的性质来导入所学新知。第二部分内容是素养目标,学生们一方面能够根据所给的自变量的取值范围来画二次函数的图象,其次可以求出二次函数一般式的顶点坐标和对称轴。第三部分内容是探究新知,这一部分一方面可以掌握配方的方法及步骤,另一方面是对配方后的表达式进行介绍。第四部分内容是课堂检测和小结。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,教师引导学生思考用待定系数法来求函数的解析式。第二部分内容是素养目标,学生一方面能够应用三点式、顶点式、交点式求二次函数的解析式,另一方面会用待定系数法求二次函数的解析式。第三部分内容是探究新知,这一部分主要包括用不同的方法求二次函数的解析式以及求证关键,同时展示了求证的步骤。第四部分内容是链接中考和课堂检测,其中包括基础巩固题和能力提升题。
这是一套与北师大版数学二年级上册“综合实践画校园路线图”相关的演示文稿,共包含 43 张幻灯片。鉴于二年级学生已经能够辨别生活中的基本方位,本节课教师通过“画校园路线图”的实践活动,引导学生将生活中的方位知识转化为直观的图形表达。通过这一活动,学生能够运用简单的数学符号和线条描绘出校园路线图,这不仅能够培养学生的观察能力,还能锻炼他们的动手操作能力,并增强他们对校园的熟悉度和热爱之情。该演示文稿由四个部分构成。第一部分是课前导入,该模板首先呈现了“校园寻宝”活动,通过这一有趣的活动激发学生的学习兴趣,让学生在活动中初步感受方位的重要性;接着是“家庭路线”分享,让学生分享自己从家到学校的路线,进一步巩固学生对方位的认识。第二部分是学习任务,这一部分首先介绍了东、西、南、北的判断方法,通过生动的讲解和实例帮助学生准确辨别方向;其次是校园路线图的画法,教师通过逐步指导,让学生掌握如何用简单的符号和线条绘制校园路线图;最后是路线图展会,通过展示学生的作品,让学生相互学习和交流,增强自信心。第三部分是课堂练习,这一部分主要包括《填空题》和《解决问题》,通过练习让学生巩固所学知识,提高运用知识解决问题的能力。第四部分是知识总结和课后作业,教师对本节课的知识进行总结,帮助学生梳理知识要点;课后作业则包括绘制自己家附近的路线图等,让学生在实践中进一步巩固所学知识,提升综合运用能力。
这套共 28 张幻灯片的 PowerPoint 课件,以北师大版六年级上册“第 3 课时——比赛场次”为主题,引导学生在体育情境中展开数学探究。课堂目标定位于三维一体:知识与技能层面,学生能够独立绘制单循环赛示意图,并准确计算所需场次;过程与方法层面,学生在观察、推断、分析的连续活动中,体验“从具体到抽象”的建模过程;情感与价值观层面,学生体会生活处处皆数学,感受数学在体育竞赛中的实用价值。课件结构清晰,由四大板块递进呈现。第一板块“课前导入”以“乒乓球有哪些比赛形式”切入,通过图片、短视频唤起学生已有经验,自然聚焦“单循环赛”——每两队之间只交手一次的核心规则,为后续探究奠定情境基础。第二板块“探求新知”是整节课的思维生长点。教师先引导学生用列表法枚举 2 队、3 队、4 队时的比赛场次,发现“场次=队数(队数-1)2”的规律;再让学生尝试用连线图把队伍抽象成点、把比赛抽象成线段,从而将“算场次”转化为“数线段”的几何问题;最后通过对比两种表征,归纳出一般公式,并追问“若有 n 队”如何表达,让符号化水到渠成。第三板块“达标练习”设置分层任务。《解决问题》提供校运动会足球赛、年级象棋赛等真实数据,要求学生先画图再列式;《知识小结》则以“小老师”形式让学生口述规律与注意事项,实现即时检测、即时矫正。第四板块“作业布置”延续课堂情境:回家调查本区篮球联赛队伍数量,用今天所学预测全部比赛场次,并思考若采用“双循环”又该如何计算。任务兼顾开放性与实践性,鼓励学生把课堂收获迁移到更广阔的现实生活中。整节课在合作讨论、动手绘图、符号抽象的循环中,让学生真正体会到“数学源于比赛,又服务于比赛”。
这套专为北师大版一年级上册第四单元“10以内加减法”设计的复习课件,一共33张幻灯片,像一座精心搭建的“知识小桥”,带领孩子们把已经学过的内容重新走一遍,却又能看到新的风景。俗话说“温故知新”,只有反复回望,才能让算理在脑海里扎下更深的根。前面几节课,孩子们已经认识了加号、减号,学会了用数一数、画一画、摆一摆的方法解决10以内的加减问题,但这还远远不够——就像刚学会走路的雏鸟,需要一次次振翅才能飞得稳。因此,今天的课堂定位是“单元回头看”:不是简单的重复,而是把散落的知识点串成线、织成网,让“连加、连减、加减混合”在孩子的思维里形成清晰的路线图。课件首先用一张“知识地图”带学生鸟瞰整个单元:从“把两部分合起来用加法”到“从总数里去掉一部分用减法”,再到“先加后减或先减后加”的混合故事,层层递进,一目了然;接着用思维导图梳理重点——“看图列式”“一图四式”“求未知加数”“减法想加”等核心策略被放大呈现,配合典型例题,让孩子再次体会“数形结合”的魅力;第三板块聚焦易错点:例如“见减就减”忽略图意、连减运算顺序颠倒、加减混合情境图信息提取不全等,通过“错题医院”的方式,让学生当小医生给“生病”的算式开处方,在笑声中加固防火墙;最后,课件设置“闯关升级”式变式练习:口算火车、青蛙跳伞、小松鼠储粮、海底探宝四组游戏,由浅入深,既巩固算法,又提升速度,还把“认真检查”的习惯悄悄植入其中。整堂课像一次充满惊喜的“数学游园”,让孩子们在温习旧知的同时,收获新的自信与成就感,为后续进位加、退位减奠定扎实的基础。
本节课所用 PPT 共 39 页,与《人教 A 版数学必修第一册 3.1.1 函数的概念(第 2 课时)》完全匹配。课堂伊始,教师首先带着学生“温故”,通过简洁明快的提问与板书,回顾上节课提炼出的函数定义及其三要素(定义域、对应法则、值域),并顺势抛出两三个贴近生活的实际问题——如气温随时间变化的曲线、出租车计费规则等——让学生在“旧知”与“现实”之间架起桥梁,自然过渡到今天的新内容。接着,教师利用精心设计的四个环节层层推进:第一环节聚焦“求函数的定义域”。PPT 先用生活化的例子解释区间概念,再用集合、区间、数轴三种语言同步呈现,帮助学生在多重表征中灵活切换;随后归纳出求定义域时必须关注的五大注意点,提醒学生“分母不为零、偶次根号下非负、对数真数为正”等易错细节。第二环节以“判断函数相等”为核心,教师给出若干组看似相同却实则不同的对应关系,引导学生从定义域与对应法则两个维度进行辨析,强化“函数相等必须两要素完全一致”的本质认识。第三环节是“题型强化训练”,PPT 先呈现一组梯度分明的填空题,考察学生对概念细节的把握;再给出两道情境化“解决问题”——如根据限速标志写出分段函数、利用几何图形建立面积模型并求值域——让学生在真实任务中体验“从文字到符号、从符号到图像”的完整建模过程。最后一个环节是“小结及随堂练习”,教师先用思维导图回顾本节四大核心要点,再布置“基础作业”与“拓展作业”双层任务:基础作业紧扣课本例题,巩固求定义域、值域的基本套路;拓展作业则引入跨学科情境,如利用指数函数描述药物浓度衰减,要求学生综合运用新旧知识进行探究。整堂课以问题链贯穿始终,既让学生在“回顾—迁移—应用”的循环中不断深化对函数概念的理解,又通过分层训练与实时反馈,确保不同层次的学生都能获得成就感与提升空间。
本套课件共44页,围绕人教A版《数学必修第一册》3.1.1节“函数的概念”(第1课时)精心设计,是一堂集知识建构、思维训练与素养提升于一体的新授课。课堂结束后,学生将在以下方面获得显著收获:一是能够准确理解函数的本质内涵,牢固掌握“定义域、对应关系、值域”这三大核心要素;二是具备辨析两个函数是否相同的能力,能够运用集合与对应的观点进行严谨论证;三是通过教师呈现的大量生活化实例与层层递进的对比探究,亲历概念生成的全过程,在“举三反一”中发展抽象概括与逻辑推理等数学思维品质;四是深刻体会函数在刻画变化规律、解决实际问题中的价值,感受数学与现实世界的紧密联系,从而激发持续的学习兴趣。课件结构清晰,由四大板块构成。第一部分“初识概念”从学生已有经验出发,借助“投信与邮箱”“出租车计价”等形象情境,抽象出对应关系,并通过类比、归纳等思维方式回顾初中“变量说”,自然过渡到高中“集合-对应说”的严格定义,实现认知的螺旋上升。第二部分“三要素解读”依次展开:先用通俗语言阐释“定义域是舞台、对应关系是剧本、值域是演出效果”的比喻,帮助学生建立整体图景;再系统梳理解析式、图像、列表、语言描述等多种表征方式,强调“形异质同”的转化思想;最后通过“判断两个函数是否相同”的典型错例,强化“定义域与对应关系完全一致”的判别标准。第三部分“题型强化”精选两类训练:一是“单项选择”快速诊断易错点,如忽视定义域限制、混淆对应顺序等;二是“解决问题”设置“阶梯水费”“疫情传播模型”等真实任务,引导学生用函数观点建模、运算、解释,体验完整的数学应用流程。第四部分“回顾提升”先以时间轴呈现函数概念从莱布尼茨到康托尔的演进史,彰显数学文化;再用“五点说明”——对象、符号、语言、思想、价值——进行课堂总结,配以即时检测与分层作业,确保学生带着问题来、带着方法走、带着兴趣学。整堂课以“情境—问题—探究—应用—反思”为主线,既关注知识的系统性,又突出思维的深刻性,最终实现“教、学、评”一体化的教学目标。
本套 PPT 共 43 页,对应《人教 A 版数学必修第一册》3.1.2《函数的表示法(第 1 课时)》。课堂伊始,教师并未直接灌输概念,而是把天平、弹簧测力计、温度计等实物带进教室,让学生在“称一称、拉一拉、量一量”的亲身体验中,先感受变量之间的依赖关系;随后,教师用同一组数据依次用解析式、列表、图像三种方式呈现,引导学生对比“哪种方法更直观”“哪种方法更精确”“哪种方法便于预测”,在对比分析中自然生成“各有千秋”的认知。为了点燃学习热情,教师布置“生活寻宝”任务:一周内,每位同学至少找到一个生活里的函数——如公交车票价、手机电量、外卖配送费——并用三种方式加以表示,下节课交流时重点说明各自优缺点,借此训练数学抽象与表达能力。PPT 的第一板块“函数的三种表示方式”依次介绍解析法、列表法和图像法,每介绍一种便配一个“微动画”演示其生成过程,让学生看到“数”如何变“式”、“式”如何变“图”;第二板块“函数的图像”先抛出“作图三大注意”——定义域、关键点、变化趋势,再示范描点法和变换作图法两种常用技巧,现场用几何画板动态演示“平移—伸缩—对称”的魔术效果;第三板块“题型强化训练”分层设计:第一层聚焦“表达方式转换”,让学生把文字情境译成解析式;第二层聚焦“图像识读”,给出折线图、曲线图让学生反推对应法则;第三层聚焦“解析式求解”,将应用题拆分为“建模—求式—验图”三步走;第四板块“小结及随堂练习”先由学生用“思维导图”自主梳理本节三大收获,再完成当堂“闯关题”:基础题巩固描点作图,拓展题则引入分段函数与绝对值函数的图像变换,为下一节埋下伏笔。整节课以“实物—数据—模型—应用”的主线贯穿,既让学生在多元表征中深刻体会函数表示的灵活性与统一性,又通过生活化任务与分层训练,培养其用数学眼光观察世界、用数学语言表达世界的核心素养。
这套面向北师大版六年级上册第六单元第4课时“比的应用(一)”的PPT课件,共25张幻灯片,以“让学生把‘比’真正用到生活里”为设计宗旨。课堂采用“情境触发—策略探究—合作提升—练习固化”四连环,引导学生在解决真实问题的过程中,深刻体会“按比例分配”的价值,并掌握多种可操作的方法,最终形成迁移能力。第一部分“为什么要按比例分”,通过“学校图书角新到120本书,按3∶2分给五、六年级”这一贴近校园生活的任务,让学生先凭直觉动手分一分,再对比“平均分”与“按比例分”的结果差异,从而认识到:当数量之间存在既定比例时,“平均分”并不公平,只有“按比例”才能兼顾各方需求。学生在讨论与争辩中,自发提炼出“按比例分配问题”的基本结构——“已知总量与部分量之比,求各部分具体数量”。第二部分“怎样按比例分”,则借助四种层层递进的解题通道,让学生体验策略多样化。通道一:借助表格“猜测—调整—逼近”,培养数感;通道二:把比转化为“份数”,用整数乘除法直观求解;通道三:画线段图,把比化成分数,再用分数乘法一步到位;通道四:设未知数列方程,走向代数思维。每一种方法都在小组内先独立尝试,再集体展示,学生通过对比发现:虽然路径不同,但本质都是“先求一份,再求几份”。教师顺势总结“归一”思想,帮助学生建立模型意识。第三部分“达标练习,成果巩固”设计了梯度分明的任务链:基础题重现课堂例题,确保人人过关;变式题把背景换成“配制果汁”“调配涂料”,检测迁移水平;拓展题则抛出“合唱队男生与女生人数比为7∶8,再加入若干女生后比例变为5∶6,问加入几人”这样的挑战,引导学有余力者综合运用方程与份数思想。整节课在合作交流中展开,在多样策略中深化,在真实任务中升华,既培养了学生的合作意识,又切实提升了他们分析和解决实际问题的能力。
本套课件以北师大版六年级上册《数学好玩》单元“反弹高度”第1课时为核心,共28张幻灯片,采用“情境—实验—巩固—延伸”的闭环设计,引导学生用数学眼光观察物理现象、用数据思维解释生活问题。课堂伊始,教师播放一段篮球从二楼平台自由落下并反复弹起的慢动作视频,配合“球到底能跳多高”这一悬念式提问,迅速点燃学生好奇,将“反弹”这一日常现象正式纳入数学探究视野。随后进入小组合作实验环节:四人一组领取篮球、网球、乒乓球等不同球种及卷尺、记录表等工具。PPT 依次呈现“四步实验法”——①统一落球高度(100 cm)、②观察并标记第一次、第二次反弹高度、③精确读数并填入记录表、④用计算器求反弹高度与下落高度的比值。教师特别提醒“视线平齐读数”“多次测量取平均”等操作细节,确保数据可靠。实验完毕,小组用平板即时上传数据,班级层面生成动态散点图,引导学生发现“不同球种反弹比例趋近于常数”的规律,进而引出“反弹系数”这一数学模型。课件第三部分“达标练习”先用两道单项选择题检验学生对“反弹高度下落高度”意义的理解,再用一道“解决问题”题——“若下落高度改为150 cm,预测网球第一次反弹高度”——实现知识迁移。最后“作业布置”分层设计:基础性作业要求在家重复实验并绘制折线统计图;拓展性作业鼓励学生拍摄其他弹性体(如弹力球、硅胶玩具)的反弹视频,计算并比较其反弹系数,将课堂探究延伸至更广阔的生活场景。整套课件以真实问题为驱动,让学生在动手、动口、动脑中体验数学与物理的跨界魅力,真正落实“数学来源于生活,又服务于生活”的课程理念。
这套共30页的PPT专为北师大版六年级上册《看图找关系》第2课时量身打造,以“观察—提炼—迁移”为主线,引导学生在真实图表中捕捉数量关系,实现从“看见数据”到“读懂故事”的跃升。课堂伊始,教师先以“共享单车一周骑行量折线图”“商场一天客流量柱形图”等学生熟悉的场景图表激活旧知,抛出“哪几天用车最多?”“上午和下午客流有什么规律?”等问题,让学生带着疑问走进数据世界。随后,通过教材中的典型图表,教师组织学生小组讨论:横轴与纵轴分别表示什么?折线的陡缓说明了什么?柱子的高低隐藏着怎样的数量差异?在一次次思维碰撞中,学生自主总结出“看标题—读坐标—比高低—找趋势—联生活”的五步读图法,教师顺势板书,形成可迁移的通用规律。第三环节“探求新知”继续用生活案例加码:先呈现“手机电量随时间变化曲线”,再切换到“家庭月度支出饼图”,引导学生对比不同图表的表达优势,体会线状图擅长表现“变化趋势”、柱状图善于比较“数量多少”、扇形图聚焦“结构占比”的特点,并让学生尝试把同一组数据改绘成另一种图表,感受“形式服务于内容”的数学思想。最后的“达标练习”设置四梯度任务:基础题要求从给定折线图读取具体数值;进阶题需根据情境补全缺失的条形图;拓展题则让学生自主调查班级同学每日运动时长,绘制图表并提出合理建议;挑战题引入“双轴图”,鼓励学有余力者思考如何同时呈现两种量的关系。整堂课以图表为媒、以问题为梯、以生活为源,帮助学生在反复观察、交流、绘制与解读的循环中,真正掌握“看图找关系”的核心本领,并深切体会图表在信息时代的广泛应用价值。
这是一套专为人教A版高一数学必修第一册第五章“三角函数”中“5.4.2正弦函数、余弦函数的性质第1课时”设计的PPT课件模板,总页数为37页,内容系统地分为四个主要部分,旨在帮助学生全面而深入地理解和掌握正弦函数与余弦函数的性质。在第一部分“正弦函数、余弦函数的周期”中,重点介绍了周期函数的基本概念以及最小正周期的定义。课件通过公式法和定义法,详细讲解了如何求解正弦、余弦函数及其复合函数的周期。通过具体的例子和推导过程,帮助学生理解周期的计算方法,为后续学习函数的性质奠定了基础。第二部分“正弦函数、余弦函数的奇偶性”从函数图象的对称性入手,结合诱导公式,深入分析了正弦函数为奇函数、余弦函数为偶函数的本质。课件通过图象展示和公式推导,帮助学生直观理解奇偶性的定义,并探讨了奇偶性在研究函数性质中的重要作用。通过这部分内容的学习,学生能够更好地理解函数的对称性,从而更全面地掌握函数的性质。第三部分“题型强化训练”通过丰富的例题和练习,涵盖了函数周期性的判断、奇偶性的判别,以及周期性与奇偶性的综合应用等多类问题。课件不仅提供了详细的解题步骤,还对解题策略和方法进行了归纳总结。通过多样化的练习,帮助学生巩固所学知识,提升解题能力,使学生能够灵活运用周期性和奇偶性解决实际问题。最后的“小结及随堂练习”部分,对周期性与奇偶性的核心知识进行了系统的梳理。课件总结了本节课的重点内容,包括周期和奇偶性的定义、求解方法以及它们在函数性质研究中的应用。同时,提供了多种类型的练习题,供学生自我检测和巩固所学内容,帮助学生进一步加深对正弦函数和余弦函数性质的理解。整个PPT课件结构层次清晰,内容丰富实用,非常适合用于课堂教学。通过系统的讲解和多样化的练习,能够有效地帮助学生扎实掌握正弦函数与余弦函数的周期性和奇偶性,并将其灵活运用到实际问题的解决中,从而提升学生的数学素养和解题能力。
这是一套专为人教A版高一数学必修第一册第五章“三角函数”中“5.4.2正弦函数、余弦函数的性质第2课时”设计的PPT课件模板,总页数为52页,内容系统地分为四个主要部分,旨在帮助学生全面而深入地理解和掌握正弦函数与余弦函数的单调性和最值性质。在第一部分“正弦函数、余弦函数的单调性”中,课件从观察函数图像入手,详细分析并归纳了正弦函数和余弦函数的单调递增和递减规律。通过直观的图像展示和详细的推导过程,课件提供了清晰的单调区间结论,并总结了便于学生记忆的方法。这部分内容帮助学生理解函数值随角度变化的规律,为后续学习函数的性质奠定了基础。第二部分“正弦函数、余弦函数的最值”结合图象和函数特性,明确指出了正弦函数和余弦函数取得最大值与最小值的条件及其取值集合。课件通过具体的例题演示了如何求解复合三角函数的最值,帮助学生掌握在不同情境下求解最值的方法。这部分内容不仅加深了学生对函数性质的理解,还提升了学生解决实际问题的能力。第三部分“题型强化训练”通过丰富的例题和练习,涵盖了求正弦型、余弦型函数的单调区间、利用单调性比较函数值大小等多类经典题型。课件不仅提供了详细的解题步骤,还总结了相应的解题策略、步骤和技巧。通过多样化的练习,帮助学生巩固所学知识,提升解题能力,使学生能够灵活运用单调性和最值性质解决实际问题。最后的“小结及随堂练习”部分,对单调性和最值性质的核心知识进行了系统的梳理。课件总结了本节课的重点内容,包括单调性和最值的定义、求解方法以及它们在函数性质研究中的应用。同时,提供了不同层次的练习题,供学生自我检测和巩固所学内容,帮助学生进一步加深对正弦函数和余弦函数性质的理解。整个PPT课件结构层次清晰,内容丰富实用,非常适合用于课堂教学。通过系统的讲解和多样化的练习,能够有效地帮助学生扎实掌握正弦函数与余弦函数的单调性和最值性质,并将其灵活运用到实际问题的解决中,从而提升学生的数学素养和解题能力。
这是一套专为北师大版数学四年级上册总复习第1课时“数与代数(一)”设计的PPT,共29页。本节课是一节复习课,旨在帮助学生系统地回顾和巩固“数与代数”相关知识。教师首先引导学生通过表格和思维导图等形式,回顾部分知识点,帮助学生构建系统性的知识体系。针对重点知识,教师结合典型练习题进行讲解和练习,让学生在实践中掌握知识和技能。最后,教师组织学生就复习中遇到的问题进行小组讨论,鼓励学生共同交流解题方法和技巧,从而提高复习效率和知识应用能力。该PPT由四个部分组成。第一部分是课前引入环节,要求学生先浏览数学书第1、7单元的内容,然后对单元知识进行归纳梳理,包括思想方法和错题归集等,帮助学生初步构建知识框架。第二部分是学习任务,主要包括“认识更大的数”、“生活中的负数”以及“学生的成长足迹和提出的问题”,通过这些内容,帮助学生全面复习本学期的重点知识。第三部分是达标练习,旨在巩固学习成果。这一部分要求学生完成课本上的习题,并尝试完成一些拓展题型,通过练习加深对知识的理解和应用。第四部分是知识总结和课后作业,帮助学生梳理本节课的重点内容,并通过课后作业进一步巩固所学知识。通过这样的设计,本节课不仅帮助学生系统地回顾了“数与代数”的知识,还通过练习和讨论提高了学生的问题解决能力和知识应用能力。这种复习方式有助于学生在期末考试中取得更好的成绩,同时也为他们后续的数学学习打下坚实的基础。
PPT全称是PowerPoint,麦克素材网为你提供数学北师大八年级上册第四章 一次函数 4.1函数(教学课件)课件含教案PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。