该课件以幻灯片的形式介绍了向量的加法的内容,方便教师在使用PowerPoint时更好的介绍向量的加法运算。PPT课件依次介绍了创设问题情境,明确研究对象、借助背景,得出概念、多角度思考,优化认知、辨析两种加法法则的一致性、明确向量加法的作图方法,理解其几何意义、联系对比,巩固新知、从定义出发,研究向量加法的运算律、向量加法的简单应用、课堂练习、布置作业、目标检测设计等内容。
此PPT模板主要从四个部分对集合总复习进行详细展开。第一部分是复习导入,主要通过买水果这一情境引导学生认识到集合的误区。第二部分是知识梳理部分,这一部分主要展示了用结合图解决实际问题的两种具体方法。第三部分是巩固练习部分,主要引导学生对上一部分所讲述的方法进行运用。第四部分是课后作业部分,这一部分可以锻炼学生的独立解题能力。
这份PPT由四个部分组成。第一部分内容是知识回顾,此模板首先展示了空间直线、平面间的垂直关系。第二部分内容是问题探讨,这一部分主要包括平面与平面垂直的研究、明确直线与直线垂直的定义,同时展示了两个平面相交的实例。第三部分内容是二面角的定义,这一部分一方面介绍了二面角的定义,另一方面要求学生根据二面角的定义画出各种类型的二面角。第四部分内容是二面角大小的刻画、两个平面互相垂直的定义及图形、符号其表示。
这套人教A版高一数学必修第一册 4.1.1《n次方根与分数指数幂》的PPT课件共47页,旨在帮助学生深入理解n次方根的概念,掌握分数指数幂的定义和计算方法,并通过对比分析,理解n次方根和分数指数幂的性质。课件内容丰富,结构清晰,注重培养学生的数学思维和计算能力。以下是重新组织后的详细内容:第一部分:分数指数幂这一部分首先带领学生认识指数幂的基本概念,包括指数、幂、底数以及指数幂的读法。通过已知的平方根、立方根的意义,逐步展开对n次方根和分数指数幂的定义及意义的研究。例如,通过具体实例展示 38=2 和 8 1/3=2,帮助学生理解n次方根和分数指数幂之间的联系。第二部分:有理数指数幂的运算性质在这一部分,课件通过指数幂的性质推导出有理数指数幂的运算性质。通过具体的例子和推导过程,学生将学习到如何进行有理数指数幂的加法、减法、乘法和除法运算。例如,通过展示 a m/n⋅a p/q=a (m/n)+(p/q),帮助学生理解指数幂的乘法性质。这种逐步推导的方式不仅帮助学生掌握运算规则,还培养了他们的逻辑思维能力。第三部分:题型强化训练为了巩固学生对n次方根和分数指数幂的理解和计算能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的指数幂运算,包括简单的计算题、化简题和应用题。通过这些练习,学生能够在不同情境中灵活运用所学知识,提升解题能力。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括n次方根的概念、分数指数幂的定义、有理数指数幂的运算性质等。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从基础概念到实际应用的逐步引导,帮助学生全面掌握n次方根与分数指数幂的知识。通过具体的实例和系统讲解,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
这份PPT由四个部分组成。第一部分内容是知识内容,此模板首先介绍了随机现象和随机事件的概念,其次是对事件关系与运算进行介绍,最后是事件的概率以及概率的基本性质。第二部分内容是目标及其解析,这一部分主要包括单元目标、达成目标的标志。第三部分内容是学生基础与目标的差距,这一部分一方面对学生的基本学情进行分析,另一方面是对破解的方法进行介绍。第四部分内容是教学过程设计和单元目标检测。
这套人教A版高一数学必修第一册 3.2.1《单调性与最大(小)值(第2课时)》的PPT课件共37页,旨在帮助学生深入理解函数的最大值和最小值的概念,并掌握求解这些极值的方法。通过结合函数的单调性,学生将学会如何高效地求解函数的最大值和最小值。此外,通过具体的实例和自主探究,学生将培养数学思维能力,提升解决实际问题的技巧。课件内容围绕四个板块展开:第一部分:函数的最大(小)值的概念及其几何意义这一部分通过分析函数及其图像的特征,帮助学生理解函数最大值和最小值的概念。通过具体的函数图像,学生可以直观地看到函数在某个区间内的最高点和最低点。课件中以表格形式总结了函数取得最大值和最小值的条件,以及这些极值的几何意义。例如,函数在闭区间上的最大值和最小值通常出现在区间的端点或函数的极值点上。通过这种直观与抽象相结合的方式,学生能够更好地理解和记忆这些概念。第二部分:利用函数的单调性解决日常生活中的问题在这一部分,课件通过具体的实例展示了如何利用函数的单调性来解决实际生活中的问题。例如,通过分析成本函数、收益函数或温度变化函数的单调性,学生可以确定最优的生产量、最佳的投资策略或预测温度变化趋势。这些实例不仅帮助学生理解单调性在实际应用中的重要性,还培养了他们将数学知识应用于现实问题的能力。第三部分:题型强化训练为了巩固学生对函数最大值和最小值的理解和求解能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的函数,包括一次函数、二次函数、分段函数等,帮助学生在多样化的题目中灵活运用所学知识。通过重复练习,学生能够熟练掌握求解函数极值的方法和技巧,提升解题速度和准确性。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括函数最大值和最小值的定义、求解方法以及单调性在求解极值中的应用。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。这种即时的反馈机制有助于学生更好地理解和掌握课程内容。整套课件设计科学,内容丰富,通过从直观到抽象、从理论到实践的逐步引导,帮助学生全面掌握函数最大值和最小值的概念和求解方法。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力。
这套人教A版高一数学必修第一册 3.2.1《单调性与最大(小)值(第1课时)》的PPT课件共41页,旨在通过系统教学帮助学生深入理解函数单调性的核心概念,掌握增函数与减函数的精确定义,并通过直观的图像观察引导学生自主探究函数的单调性特征。课件内容围绕四个板块展开:第一部分:函数单调性的定义及判断和证明这部分聚焦于函数单调性的基础概念。通过分析函数图像的上升与下降趋势,引导学生从直观的图像特征入手,逐步过渡到用两变量(自变量与函数值)的变化关系来描述单调性。课件中详细展示了如何从图像的直观感受出发,总结出增函数和减函数的定义,并用符号语言精确表述。例如,对于增函数,当自变量 x 1x 2时,函数值 f(x 1)≤f(x 2);对于减函数,则 f(x 1)≥f(x 2)。通过具体的函数图像和实例,帮助学生理解并掌握这些定义。第二部分:利用函数单调性或图像求最值在这一部分,课件通过一系列精心设计的例题,帮助学生熟悉如何利用函数的单调性或图像来求解函数的最大值和最小值。通过具体的解题步骤,学生可以直观地看到如何根据函数的单调区间确定极值点,以及如何通过图像观察找到函数的最值。这部分不仅强化了学生对单调性的理解,还提升了他们运用这一性质解决实际问题的能力。第三部分:题型强化训练为了巩固学生对单调性概念的理解和应用能力,这一部分提供了丰富的练习题。通过重复练习同一类型的题目,学生能够熟练掌握解题方法和技巧。这些练习题涵盖了不同类型的函数,包括一次函数、二次函数以及简单的分段函数,帮助学生在多样化的题目中灵活运用单调性的定义和性质。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾函数单调性的特点,以及如何利用单调性求解参数范围等重要知识点。思维导图的形式使得知识结构更加清晰,便于学生理解和记忆。同时,随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。整套课件设计科学,内容丰富,通过从直观到抽象、从定义到应用的逐步引导,帮助学生全面掌握函数单调性的概念和应用,为后续学习更复杂的函数性质和微积分知识打下坚实的基础。
这是一套精心设计的教学课件模板,专为人教A版高一数学必修第一册第五章“三角函数”中的“5.3诱导公式第2课时”而制作,总页数为50页,包含四个核心板块。在“诱导公式五、六”这一开篇部分,巧妙地借助几何对称性展开探究,以此来引入公式五和公式六。它细致地展示了角 π/2−α 和角 π/2+α 与角 α 的正余弦函数值之间的关系,并且总结出了便于学生理解和记忆的口诀,帮助学生掌握这些公式所遵循的通用规律,为后续的学习奠定坚实的基础。紧接着是“诱导公式的综合应用”板块。该部分选取了一系列典型的例题,生动地演示了如何运用诱导公式来化简三角函数式、求解三角函数值以及证明恒等式。在讲解过程中,特别强调了观察角与角之间的关系、函数名称的转化以及式子结构特点的重要性,并且还涉及了已知某个三角函数值,如何求解其他相关值的问题,旨在培养学生灵活运用诱导公式解决实际问题的能力。“题型强化训练”部分则对不同难度和类型的习题进行了系统的组织。它涵盖了利用诱导公式进行化简求值、证明恒等式、在三角形中的应用以及综合应用等重点题型。针对每类题目,都配有相应的方法总结和易错点提示,这有助于学生在练习过程中巩固所学知识,并且逐步提升自身的解题能力,从而更好地应对各种类型的题目。最后是“小结及随堂练习”板块。这一部分对诱导公式五、六及其应用进行了要点回顾,让学生能够再次梳理重点知识。同时,还提供了教材课后习题的详细讲解和答案,方便学生在课后进行自主复习和巩固,进一步加深对诱导公式的理解和运用,确保学生能够扎实掌握本节课的核心内容。
本套 PPT 课件模板是为教学人教 A 版高一数学必修第一册第五章三角函数 5.3 节诱导公式第 1 课时精心设计的,总共包含 38 页内容,整体上由四个核心部分构成。在第一部分 “理解诱导公式二 ~ 四” 中,着重以单位圆的对称性为切入点,借助几何直观来展开对诱导公式二(π + α)、公式三(-α)以及公式四(π - α)的深入探究。通过严谨的推导过程,详细剖析了这三类诱导公式的内涵以及结构特征,进而总结归纳出在这些诱导公式中,函数名保持不变,而符号则需要依据象限来确定这一重要规律。第二部分 “运用诱导公式求三角函数的值” 明确提出了求值时应遵循的四个关键步骤,即先将负角转化为正角,再将大于 360 的角转化为小于 360 的角,接着将大于 90 的角转化为锐角,最后求出锐角三角函数的值。并且,通过精选的典型例题,生动形象地向学生展示了如何巧妙地将任意角的三角函数转化为锐角三角函数来进行求值,让学生能够清晰地掌握整个转化过程。第三部分 “题型强化训练” 精心设置了给角求值、给式(值)求值以及三角函数式化简这三类具有代表性的典型问题。在讲解过程中,结合具体的例题,深入细致地讲解了解决条件求值问题时常用的差异分析策略和转化技巧,同时还介绍了切化弦、常数代换等实用的化简方法,旨在帮助学生更好地掌握不同类型题目的解题思路和方法。在第四部分 “小结及随堂练习” 中,对本节课所学的知识点进行了全面的总结,列出了清晰的知识清单和方法要点,让学生能够对本节课的重点内容一目了然。此外,还配备了分层练习题目,通过不同难度层次的练习,帮助学生进一步巩固对诱导公式应用的掌握,从而更好地检验学生的学习效果,确保学生能够扎实地掌握本节课的知识内容。
这份PPT由五个部分组成。第一部分内容是内容解析,此模板首先介绍了古典概型的相关内容,其次是对教学思路进行展示,最后是教学重难点。第二部分内容是教学目标,学生一方面能够正确理解古典概型的两大特点,另一方面能够掌握古典概型的概率计算公式。第三部分内容是教学过程设计,主要包括情境引入、探索新知、师生活动和总结知识。第四部分内容是课堂检测和小结。第五部分内容是课后反思。
这份PowerPoint由四个部分构成。第一部分内容是新课探究,该模板首先对平面向量和空间向量的基本定理进行阐述。第二部分内容是应用新知,这一部分首先展示了用基底表示向量的反思感悟,其次是空间向量基底的概念辨析,最后对基底判断的基本思路及方法进行简要说明。第三部分内容是课堂小结,这一部分主要包括空间向量基本定理的内容、应用和特殊情况。第四部分内容是作业布置和作业答案。
这是一套精心设计的“椭圆及其标准方程”PPT课件模板,整套课件包含51张幻灯片,结构清晰且内容丰富。该课件以明确的学习目标为导向,巧妙地将内容划分为三个部分,层层递进,符合学生的学习规律。第一部分是引入新知。课件以贴近学生生活的场景为切入点,生动地引入了“椭圆”这一数学概念。这种设计能够迅速激发学生的学习兴趣,让学生从熟悉的生活情境中发现数学的影子,从而主动参与到课堂学习中来,为后续的学习奠定良好的基础。第二部分是新课探究。在成功引入概念之后,课件迅速切入“椭圆”的定义讲解。通过精心设计的问题,课件引导学生深入思考,促使他们主动探索椭圆的性质和特点。这一环节不仅传授了知识,更重要的是培养了学生的自主学习能力和思维能力,让学生在思考中加深对椭圆定义的理解。第三部分是应用新知。在学生对椭圆的概念和定义有了清晰的认识之后,课件通过一系列难度适中的练习题,让学生在实践中巩固所学知识。每道练习题都配有详细的解析,帮助学生理解解题思路和方法,确保学生能够在课堂上及时吸收和掌握知识点。通过练习,学生能够进一步深化对椭圆标准方程的理解,真正将知识转化为自己的能力。整套PPT模板在设计上充分考虑了学生的认知特点和学习心理。三个部分衔接自然流畅,从引入到探究再到应用,环环相扣,逻辑清晰。导入部分紧密联系学生的生活实际,让学生有话可说,积极参与课堂互动;应用新知部分的练习难度适中,配有详细解析,有利于学生在课堂上及时巩固所学知识。通过先透彻讲解“椭圆”的定义,再引导学生推导椭圆的标准方程,最后通过练习加以巩固,这种教学流程设计科学合理,能够有效提高学生的学习效果,是一套非常实用且高效的数学教学课件模板。
这是一套精心设计的“抛物线及其标准方程”PPT课件模板,包含53张幻灯片,内容丰富且结构清晰,旨在帮助学生系统地学习抛物线的定义及其标准方程,并通过实践应用巩固所学知识。课件结构与内容第一部分:创设背景,引入新知课件以一组精美的图片为起点,让学生欣赏生活中的抛物线。这些图片展示了抛物线在自然和人造环境中的广泛应用,如喷泉的水柱、桥梁的设计、卫星天线的形状等。通过这种直观的展示,学生能够感受到抛物线的美感和实用性,从而激发他们的学习兴趣。这种新颖有趣的导入方式,不仅能够吸引学生的注意力,还能让他们在熟悉的情境中发现数学的影子,为后续的学习打下良好的基础。第二部分:探究新知在引入抛物线的概念之后,课件进入第二部分——探究新知。这一部分通过信息技术工具,引导学生进行作图操作。学生可以通过软件绘制抛物线,并在作图过程中观察抛物线的特征。通过一系列精心设计的问题和探究活动,学生能够逐步发现抛物线的定义。课件通过图形展示和逐步推导,帮助学生理解抛物线的定义和标准方程的推导过程。这种探究式学习方式,不仅能够帮助学生更好地理解抛物线的定义和标准方程,还能培养他们的自主学习能力和逻辑思维能力。第三部分:应用新知在学生对抛物线的定义和标准方程有了清晰的理解之后,课件进入第三部分——应用新知。这一部分通过一系列难度适中的练习题,引导学生将所学知识应用到实际问题中。每道练习题都配有详细的解析,帮助学生理解解题思路和方法。通过当堂练习,学生能够及时巩固所学知识,教师也能够根据学生的完成情况及时调整教学策略,确保学生能够真正掌握本节课的重点内容。这种设计不仅有助于学生在实践中提升解题能力,还能帮助他们更好地理解抛物线在实际生活中的应用。课件特点导入新颖有趣整套PPT模板在设计上注重导入部分的新颖性和趣味性。通过展示生活中的抛物线图片,学生能够直观地感受到抛物线的美感和实用性。这种导入方式不仅能够吸引学生的注意力,还能激发他们的学习兴趣,让他们在熟悉的情境中发现数学的影子。通过这种直观的展示,学生能够主动去学习所学知识,增强学习的主动性和积极性。探究式学习课件通过探究式学习方式,引导学生在作图过程中发现抛物线的定义和标准方程。这种学习方式能够激发学生的主动性和创造性,帮助他们在思考和讨论中更深刻地理解知识。通过问题引导和逐步推导,学生不仅能够掌握知识,还能培养他们的自主学习能力和逻辑思维能力。实用性强课件不仅展示了抛物线的定义和标准方程,还通过大量练习题和详细解析,帮助学生巩固所学知识。练习题设计合理,难度适中,能够帮助学生在实践中提升解题能力。通过当堂练习和即时反馈,学生能够及时发现自己的不足并加以改进,从而更好地掌握抛物线的几何性质。重点突出整个演示文稿的重点都在于引导学生发现问题、探究问题、得出结论。通过精心设计的问题和探究活动,学生能够在思考和讨论中逐步掌握抛物线的定义和标准方程。这种设计不仅能够帮助学生更好地理解知识,还能培养他们的自主学习能力和逻辑思维能力。总结这是一套非常实用且高效的数学教学课件模板。它不仅能够帮助学生系统地学习抛物线的定义及其标准方程,还能通过实践应用巩固所学知识。通过这种循序渐进的教学设计,学生能够在理论与实践的结合中,更好地掌握抛物线的几何性质,为后续的数学学习打下坚实的基础。这种设计不仅有助于学生在课堂上提升解题能力,还能激发他们的学习兴趣,提高数学成绩。
这是一套精心设计的“双曲线及其标准方程”PPT课件模板,包含53张幻灯片,内容丰富且结构清晰,旨在帮助学生系统地学习双曲线的定义及其标准方程,并通过实践应用巩固所学知识。课件结构与内容第一部分:创设背景,引入新知课件以广州电视塔“小蛮腰”为背景,巧妙地引入了双曲线的学习。这种新颖有趣的导入方式,不仅能够迅速吸引学生的注意力,还能激发他们的学习兴趣。通过展示“小蛮腰”的独特造型,课件引导学生观察其形状与双曲线的相似性,从而自然地引入双曲线的概念。这种联系实际生活的方式,符合学生的学习心理,能够让学生在熟悉的情境中发现数学的美和实用性,为后续的学习打下良好的基础。第二部分:探究新知在引入双曲线的概念之后,课件进入第二部分——探究新知。这一部分详细讲解了双曲线的定义,并通过一系列精心设计的问题和探究活动,引导学生深入思考双曲线的性质。课件通过图形展示和逐步推导,帮助学生理解双曲线的标准方程。这种探究式学习方式,不仅能够帮助学生更好地理解双曲线的定义和标准方程,还能培养他们的自主学习能力和逻辑思维能力。通过逐步引导和问题驱动,学生能够在思考和讨论中逐步掌握双曲线的核心知识。第三部分:应用新知在学生对双曲线的定义和标准方程有了清晰的理解之后,课件进入第三部分——应用新知。这一部分通过一系列难度适中的练习题,让学生将所学知识应用到实际问题中。每道练习题都配有详细的解析,帮助学生理解解题思路和方法。通过当堂练习,学生能够及时巩固所学知识,教师也能够根据学生的完成情况及时调整教学策略,确保学生能够真正掌握本节课的重点内容。这种设计不仅有助于学生在实践中提升解题能力,还能帮助他们更好地理解双曲线在实际生活中的应用。课件特点重难点明确整套PPT模板在设计上注重教学的逻辑性和有效性。三个部分充分展示了本节课的重难点,从创设背景到探究新知再到应用新知,环环相扣,逻辑清晰。通过不同颜色的字体和图形标注,课件在视觉上帮助学生聚焦于关键内容,使学生能够快速抓住重点。生动有趣导入部分选择了广州电视塔“小蛮腰”这一著名景点,新颖有趣,符合学生的学习心理。这种联系实际生活的方式,不仅能够让学生在熟悉的情境中发现数学的美和实用性,还能激发他们的学习兴趣。通过这种生动有趣的导入方式,学生能够在学完本课知识后,主动发现并了解生活中的数学,从而在生活中学习,带动他们学习数学的兴趣。实用性强课件不仅展示了双曲线的定义和标准方程,还通过大量练习题和详细解析,帮助学生巩固所学知识。练习题设计合理,难度适中,能够帮助学生在实践中提升解题能力。通过当堂练习和即时反馈,学生能够及时发现自己的不足并加以改进,从而更好地掌握双曲线的几何性质。总结这是一套非常实用且高效的数学教学课件模板。它不仅能够帮助学生系统地学习双曲线的定义及其标准方程,还能通过实践应用巩固所学知识。通过这种循序渐进的教学设计,学生能够在理论与实践的结合中,更好地掌握双曲线的几何性质,为后续的数学学习打下坚实的基础。这种设计不仅有助于学生在课堂上提升解题能力,还能激发他们的学习兴趣,提高数学成绩。
这份PowerPoint由四个部分构成。第一部分内容是全称量词命题的否定,该模板首先展示了新知部分,包括导入、学习、认识、应用和探究新知。第二部分内容是全称量词命题与存在量词命题的综合应用,这一部分首先要求学生写出存在量词命题的否定,其次展示了相关解析,最后对知识内容进行总结。第三部分内容是典型例题分析,这一部分主要包括知识巩固和能力提升。第四部分内容是小结及随堂练习。
PPT模板从课题引入、教学新知、知识梳理、课堂练习、知识拓展五个部分来展开《数学广角集合》的教学内容。PPT模板的第一部分通过脑筋急转弯和实际问题来导入课堂。第二部分创设了跳绳、踢毽子比赛的数学情境,引入了数学名词集合。第三部分通过不同的情境问题指导学生梳理知识点。第四部分通过练习来检查学生的学习情况。第五部分对本节课进行拓展延伸,分享了有关集合的其他知识。
此PPT模板主要从六个部分对数学广角集合,利用集合图解决简单实际问题进行详细展开。第一部分是情境导入,主要通过小熊开文具店需要进货这一情景来引导学生,从而让他们区分每一天共同进的货以及不同的货物。第二部分是新课探究,同样采用生活情境的方式让学生自主的学会集合的定义。第三部分是随堂练习。第四部分是培优训练部分。第五部分是课堂小结部分。第六部分是课后作业部分。
这份PowerPoint由五个部分构成。第一部分内容是余弦定理的教学内容,包括余弦定理的向量证明方法、利用余弦定理及其推论解三角形。第二部分内容是教学目标,学生首先可以运用向量运算完成余弦定理的证明,其次帮助学生加强新旧知识的联系,最后可以利用余弦定理解决三角形问题。第三部分内容是教学过程设计,这一部分主要包括余弦定理的证明、余弦定理的推论推导、勾股定理与余弦定理的关系。第四部分内容是总结提升。第五部分内容是课堂检测与评价。
该课件以幻灯片的形式介绍了平面的内容,方便教师在使用PowerPoint时更好的介绍立体几何的基础内容。PPT课件依次介绍了本节课的学习目标、教学重点、教学难点。其次,PPT课件还介绍了平面的概念、平面的画法与表示、平面与平面图形的区别和联系、点,直线及平面之间的位置关系、平面的基本性质、平面的相关例题等方面的内容。总的来说,这套PPT课件的内容详略得当。
该课件以幻灯片的形式介绍了直线与直线平行的内容,方便汇报人在使用PowerPoint时更好的介绍直线与直线平行的基本内容。PPT课件依次呈现了环节一复习旧知,引入新课、环节二直观感受,操作确认,探究基本、环节三初步应用,巩固理解、环节四探究等角定理、环节五初步应用,巩固理解、环节六归纳小结,形成结构、环节七目标检测,检验成果等方面的内容。
PPT全称是PowerPoint,麦克素材网为你提供高一人教数学必修一1.1 集合的概念课件含教案PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。