这套由二十二张幻灯片构成的教学课件,专为北师大版八年级上册第四章《一次函数的图像》第一课时“正比例函数的图像与性质”量身定制,旨在让学生经历“表达式→表格→描点→连线→观察→归纳”的完整过程,真正理解“k值决定直线姿势,原点必过”的图像本质。课堂依旧四段推进:情境导入—新知探究—典例巩固—课堂小结。开篇“情境导入”给出汽车仪表盘特写:指针定格在80 km/h,屏幕动态显示行驶时间t与路程s同步增加。教师提问:“除了列表、写式,还能怎样一眼看出s=80t的变化趋势?”学生脱口而出“画图像”,生活经验瞬间对接“图像法”必要性,引出本节核心任务。“新知探究”分三步走:先回顾函数图像定义——“所有有序点(x,y)的集合”;随后聚焦正比例y=kx,学生分组填表、描点、连线,发现无论k为正为负,图像都是一条经过原点的直线;接着用GeoGebra动态拖动k值,观察直线旋转,归纳出“k0,过一、三象限,上升;k0,过二、四象限,下降;|k|越大,直线越陡”的性质口诀,实现“数形同步”。“典例巩固”采用“一题三问”:给出y=2x,先列表描点验证直线,再求x=1.5时的函数值,最后判断点(-2,-4)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,要求根据图像写解析式并比较k值大小,实现“所见即所考”。结课用“思维导图快闪”:列表→描点→连线→观察→归纳五节点依次展开,学生口头接龙补充易错点;作业分两层:A层完成教材配套描点画图,B层拍摄家中水龙头流水视频,记录时间与接水量,验证是否为正比例并画图像,把课堂发现带回家。整套课件通过“动态生成—即时观察—对比归纳”的闭环,不仅让学生真正理解“解析式与图像一一对应”,更在“画一画、看一看、比一比”的亲历中,深刻体会数形结合思想,为后续学习一次函数平移、斜截式及实际应用奠定坚实的图像与性质双重基础。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这是一套精心制作的一次函数第 1 课时演示文稿,共包含 31 张幻灯片。为了帮助学生更好地掌握本节课的知识重点,教师巧妙运用了情景教学法、讲授法和讨论法这三种教学方法。课堂伊始,教师通过创设真实的数学情境,将抽象的数学知识与实际生活紧密相连,引导学生在具体的问题情境中自主发现问题,并积极探寻其中的规律。这种情境导入的方式,不仅能够激发学生的学习兴趣,还能让他们在探索过程中自然而然地引出一次函数的概念,使学生对一次函数有了初步的感性认识。在学生对一次函数有了初步感知后,教师通过讲授法,深入浅出地为学生讲解一次函数的定义。通过对定义的详细阐述,学生不仅能够清晰地了解一次函数的构成要素,还能准确地区分一次函数与正比例函数之间的关系,从而扎实地掌握基础知识,为后续学习奠定坚实的基础。在讲解过程中,教师注重引导学生思考,鼓励他们积极提问,营造了良好的学习氛围。这份演示文稿结构严谨,由八个部分组成。第一部分是“情景导入”,通过生动的情境引入,阐述函数解析式的关系,让学生在情境中初步感受函数的存在与意义。第二部分“新知讲解”,首先介绍了变量之间的对应关系,这是理解函数概念的关键所在。随后,详细讲解了函数解析式的写法,让学生明白如何用数学语言表达变量之间的关系,进一步加深对函数概念的理解。第三部分“典例讲解”,通过精选的填空题和问题解答,将理论知识与实际问题相结合,引导学生运用所学知识解决具体问题,培养学生的解题能力和思维能力。第四部分“针对训练”,针对本节课的重点知识进行专项练习,帮助学生巩固所学,提高对知识的熟练程度。第五部分“拓展探究”,为学生提供了一个更广阔的思维空间,鼓励他们对一次函数的相关知识进行深入探究,培养学生的创新思维和自主学习能力。第六部分“当堂检测”,通过一系列精心设计的检测题,及时了解学生对本节课知识的掌握情况,发现学生学习过程中存在的问题,以便教师及时调整教学策略,确保教学目标的达成。第七部分“小结梳理”,引导学生对本节课所学知识进行回顾和总结,帮助学生梳理知识脉络,强化记忆,使知识更加系统化,便于学生课后复习和巩固。最后一部分“布置作业”,通过布置适量的课后作业,让学生在课后进一步巩固所学知识,同时也有助于教师了解学生的学习情况,为后续教学提供参考。整套演示文稿内容丰富、层次分明,教学方法灵活多样,充分考虑了学生的认知规律和学习特点。通过情景导入激发兴趣,讲授法夯实基础,讨论法促进思维碰撞,让学生在轻松愉快的氛围中掌握了一次函数的基本概念和相关知识。同时,各个部分的设计环环相扣,既注重知识的传授,又重视能力的培养,有助于学生全面提高数学素养,为今后的数学学习开启一扇明亮的大门。
这是一套专为人教版九年级数学下册“锐角三角函数”第一课时精心打造的PPT,共包含23页。在本节课的教学中,教师可以巧妙地借助实际生活情境来引入锐角三角函数的新概念,让学生真切地感受到学习这一知识的现实意义,从而激发他们积极主动地投身于知识学习之中。此外,教师还可采用直观的图形教学法,借助图形的直观展示,帮助学生精准地理解锐角三角函数的概念,深入领会三角函数的定义以及特殊角三角数值的推导过程,使抽象的数学知识变得形象易懂。在教学过程中,教师还应鼓励学生积极分享自己的解题技巧和数学思想方法,通过思维的碰撞,帮助其他学生更深入地理解知识,拓展解题思路,培养学生的合作学习精神和创新思维能力。该PPT由八个精心设计的部分构成。第一部分为复习巩固环节,通过回顾相关基础知识,为学生学习新知识做好铺垫。第二部分是探究新知,重点聚焦于正弦的概念和定义,引导学生从已知知识逐步过渡到新知识的学习。第三部分为新知讲解,一方面详细呈现本堂课的新知识内容,另一方面对解题技巧进行系统介绍,帮助学生掌握有效的解题方法。第四部分是典例分析,通过精选的典型例题,深入剖析锐角三角函数的应用,让学生在例题的引导下加深对知识的理解和掌握。第五部分是针对训练,设计了一系列与本节课知识相关的练习题,旨在巩固学生对新知识的掌握,并检验他们的学习效果,同时也有助于学生熟悉不同题型的解题思路和方法。第六部分直击中考,选取了与锐角三角函数相关的中考真题或模拟题,让学生提前感受中考的题型和难度,增强应试技巧和心理素质。第七部分是归纳小结,引导学生回顾本节课的重点知识和方法,帮助他们梳理知识脉络,构建完整的知识体系,确保学生能够清晰地把握知识要点。第八部分则是布置作业,通过适量的课后作业,进一步巩固学生对锐角三角函数知识的理解和应用能力,促使学生在课后继续思考和探索,将所学知识内化为自己的能力,为后续的学习打下坚实的基础。
该课件以幻灯片的形式介绍了基本不等式的内容,方便汇报人在使用PowerPoint时更好的介绍利用基本不等式求最值的步骤。PPT课件的第一部分介绍了重要不等式和基本不等式的概念。第二部分介绍了利用不等式求最小值、利用基本不等式求最大值的方法等内容。第三部分主要呈现了一些比较典型的例题。第四部分对不等式的定义、不等式的特点、证明不等式的方法进行了简要的总结。
该课件以幻灯片的形式介绍了等式与不等式性质的内容,方便汇报人在使用PowerPoint时更好的介绍用做差法比较大小的具体步骤。PPT课件的第一部分介绍了用不等式来表示不等关系的内容。第二部分主要介绍了做差法比较大小的具体步骤,并呈现了相关的例题。第三部分主要呈现了用不等式表示不等关系的步骤以及用不等式表示不等关系的注意事项。第四部分主要对本节课的内容进行了简要的总结。
该课件以幻灯片的形式介绍了基本不等式在实际生活中的应用的内容,方便汇报人在使用PowerPoint时更好的介绍基本不等式在实际生活中的运用。PPT课件的第一部分是基本不等式在生活中的应用,介绍了重要不等式与基本不等式在实际生活中的应用。第二部分是基本不等式在几何中的应用,主要通过呈现的几何题来介绍基本不等式在几何中的应用。第三部分呈现了关于基本不等式的一些习题。第四部分对基本不等式的解题步骤及注意事项进行了简要的介绍。
该课件以幻灯片的形式介绍了等式与不等式性质的内容,方便汇报人在使用PowerPoint时更好的介绍不等式的性质。PPT课件的第一部分介绍了不等式的特征。第二部分主要通过例题来介绍了利用做差法比较大小的具体步骤及相关的注意事项。第三部分介绍了关于等式性质和不等式的性质、利用不等式的性质证明不等式等方面的例题。第四部分对本节课的内容进行了总结。
这份PowerPoint由四个部分构成。第一部分内容是新课探究,该模板首先对平面向量和空间向量的基本定理进行阐述。第二部分内容是应用新知,这一部分首先展示了用基底表示向量的反思感悟,其次是空间向量基底的概念辨析,最后对基底判断的基本思路及方法进行简要说明。第三部分内容是课堂小结,这一部分主要包括空间向量基本定理的内容、应用和特殊情况。第四部分内容是作业布置和作业答案。
这份共十六张的PPT课件,紧扣北师大版八年级上册第四章《一次函数的应用》第一课时——“确定一次函数的表达式”,以“会看图、会设式、会求参”为核心目标,引导学生在图像与情境中还原解析式,深刻体验数形结合的魅力。课堂仍循五步展开:温故—情境—新知—典例—小结。“温故复习”用快闪方式唤醒记忆:正比例函数y=kx的图像必过原点,一次函数y=kx+b的斜率k定方向、截距b定位置,学生边口述边用手势比斜率,教师顺势板书“两点定一线”,为后续求参埋下伏笔。“情境导入”给出两条已画直线:y=2x+1与y=-x+3,让学生抢答“谁先画到y轴1?谁与x轴交于-3?”在温习图像特征的同时,教师追问:“如果反过来,已知直线经过(0,4)和(2,0),你能写出它的解析式吗?”问题一转,引出本课核心任务——由图或情境确定表达式。“新知探究”分两步走:先特殊后一般。①确定正比例函数:给出图像过点(3,6),学生口算k=2,写出y=2x,归纳“一个非原点即可定k”;②确定一次函数:给出图像与y轴交于-1,且过点(2,3),学生先写y=kx-1,再代入求k=2,归纳“两点或一点加截距可定k、b”。教师随即用GeoGebra动态演示:拖动两点,解析式实时变化,学生眼见“点动式动”,深刻感受坐标与参数的对应关系。“典例巩固”采用“一题三问”:给出一次函数图像与坐标轴两交点,先写解析式,再求x=-1时的函数值,最后判断点(m,m+2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,给出实际情境“租车计费”,要求先设y=kx+b,再利用两组数据求参,实现“情境→图像→解析式”的完整闭环。结课用“思维导图快闪”:两点坐标→列方程组→解k、b→写解析式四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“由图求式”练习,B层拍摄家中电表读数,记录两次时间与示数,写出一次函数模型并预测下次读数,把课堂所学搬回家。整套课件通过“动态演示—即时求参—情境回归”的闭环设计,不仅让学生真正掌握“两点定一线”的求法,更在“看图像→写解析式→回代检验”的反复实践中,深刻体会数形结合思想,为后续学习一次函数与方程、不等式综合应用奠定坚实的模型与思维双重基础。
这是一套专为苏教版五年级上册数学第八单元第 1 课时设计的新课资料,主题聚焦于 “用字母表示简单的数量关系”,整体设计充分贴合小学生的认知特点,旨在帮助学生轻松开启本单元的学习之旅。PPT 开篇便明确了本课的学习目标,包括理解字母表示数的方法、学会书写含字母的式子等,同时清晰指出本课的重难点,即如何用含字母的式子表示数量关系以及进行代入求值。为了激发学生的学习兴趣,PPT 以课前导入环节巧妙引入,通过一个与七巧板图形数量相关的问题,迅速吸引学生的注意力,引导他们进入本课的学习情境。在核心部分,PPT 精心设计了三个学习任务,层层递进,帮助学生逐步掌握知识要点。首先,围绕 “用含字母的式子表示数量”,PPT 借助 “摆三角形用小棒” 和 “甲乙两地路程” 这两个贴近生活的实例,深入讲解字母在表示数时的含义以及其取值范围。通过这些实例,学生能够直观地感受到字母在不同情境下所代表的数量变化,从而初步理解字母表示数的灵活性和实用性。接着,PPT 进入第二个学习任务——“用含字母的式子表示公式”。以正方形的周长和面积公式为例,详细说明了乘号的简写规则,例如将 [a4] 简写为 [4a]。这一部分不仅帮助学生掌握数学符号的规范书写,还进一步加深了他们对字母在公式中表示数的理解,使学生能够更加熟练地运用字母来表达数学公式,为后续的数学学习奠定基础。最后,在 “达标检测巩固” 环节,PPT 提供了丰富多样的练习题,涵盖式子简写、年龄和路程等数量关系的填空题,以及买足球费用、猎豹速度等实际应用题。这些练习题设计巧妙,既巩固了学生对本课知识的掌握,又培养了他们运用所学知识解决实际问题的能力,让学生在实践中进一步深化对知识的理解。在 PPT 的结尾部分,通过知识总结梳理了本课的核心要点,帮助学生回顾和巩固所学内容。整套 PPT 以 “具象情境→抽象表达→练习巩固” 的逻辑顺序推进,从具体的生活实例出发,引导学生逐步抽象出数学表达,再通过针对性的练习加以巩固,这一过程符合小学生的认知规律,能够有效帮助学生掌握用字母表示数量关系与公式的方法。无论是用于课堂新授,还是学生课后复习,这套 PPT 都能发挥重要作用,助力学生在数学学习中迈出坚实的一步。
这套《人教A版必修第一册 4.1.2 无理数指数幂及其运算性质》的 PPT 课件共 44 页,旨在引领高一学生跨越“有理数指数”到“实数指数”的认知鸿沟。整体目标有三:一是借助逼近和极限思想,让学生真正理解无理数指数幂的数学本质;二是牢牢掌握并灵活运用三条运算性质(同底数幂相乘、幂的乘方、积的乘方);三是让学生在“观察—猜想—验证—归纳”的完整探究链条中,体验数学建模的全过程,感受数学体系的严谨性与统一性。课件内容沿四条主线展开。第一条主线是“无理数指数幂的引入”。通过回顾 2^√2 的历史背景,设置问题情境:当指数是无理数时,幂值究竟如何存在?继而借助有理数列的单调逼近,配合数轴动态演示,直观呈现极限过程,帮助学生完成从“可感”到“可证”的思维跃迁。第二条主线是“实数指数幂的运算性质”。首先给出严谨定义:对于任意正实数 a 与任意实数 x,a^x 都是一个唯一确定的实数;接着以定理形式呈现三条运算性质,并用代数证明与数值验证双管齐下的方式,强化学生对公式的信任度;随后配备变式练习,引导学生从“会用”走向“活用”。第三条主线为“题型强化训练”。该部分设计了三类典型任务:一是化简求值题,侧重公式正向与逆向的灵活切换;二是含参讨论题,引导学生在字母的不确定性中把握指数函数的单调性;三是跨学科情境题,如利用指数模型刻画放射性衰变,让学生在真实问题中体验数学的应用价值。每道例题后均设置“思路点拨—规范解答—反思提升”三步闭环,确保训练效果。第四条主线是“小结与随堂检测”。首先以思维导图形式梳理本节核心概念、性质、易错警示;随后安排 5 道梯度随堂练习,覆盖基础巩固、易错辨析与拓展拔高,配合即时反馈二维码,实现课堂即时诊断与个性化补偿学习。整份课件以问题链驱动、技术融合、思维显化为设计灵魂,既关注知识建构,又关注核心素养落地,力图让学生在“看见极限—理解极限—运用极限”的层层递进中,完成从感性到理性的华丽转身。
该课件以幻灯片的形式介绍了复数乘除运算的三角表示及其几何意义的内容,方便我们在使用PowerPoint时更好的了解负数运算的三角表示示及其意义。PPT课件依次介绍了本节课的主要内容、学生的学习情况、具体的教学步骤及注意事项等内容。此外,PPT课件还呈现了相应的例子以及具体的解题过程,帮助学生更好的了解复数运算中的三角表示及其几何意义。
这份PowerPoint由四个部分构成。第一部分内容是学习目标和重难点,该模板首先对教学重点和教学难点进行展示,同时展示了核心素养。第二部分内容是课前引入,这一部分首先要求学生完成相关题型,其次展示了学习任务,包括“用含有字母的式子表示稍复杂的数量关系”、“化简含有字母的式子”,最后对所学知识进行总结。第三部分内容是分层练习,巩固提升,这一部分主要是《达标练习》。第四部分内容是知识总结。
本套PPT模板在内容上首先介绍了本节课的教学目标,包括掌握直线的倾斜角与直线斜率的概念、了解倾斜角和斜率概念的形成过程等:接着进行情境导入,回顾复习几何知识的研究方法,并通过直线的确定方法和坐标系引出对倾斜角的定义;然后展示斜率与倾斜角的关系,以及斜率的定义,并带领学生进行习题训练,巩固所学知识;最后进行了课堂小结,布置了作业;
本套PPT课件是为人教版化学九年级上册物质组成的表示的第一课时精心设计的,共包含29张幻灯片。课件的核心目标是帮助学生深入理解化学式的含义,掌握常见物质化学式的读写方法,并能够依据元素的化合价正确书写化学式,从而提升学生的实际应用能力。课程的第一部分聚焦于化学式的意义、读法和写法。通过自由讨论的方式,课件引导学生总结化学式的意义,强调了宏观和微观层面上的区别,并详细介绍了单质和化合物化学式的书写与读法。这一部分的教学旨在让学生建立起对化学式基本概念的清晰认识。第二部分则转向如何用化学式表示特定物质的组成。课件详细讲解了在书写化学式时需要注意的事项,并通过实际练习题帮助学生进一步理解和记忆这些知识点。这一环节的设计旨在通过实践操作,加深学生对化学式表示方法的掌握。在课堂的最后部分,课件通过小结环节,引导学生回顾和总结本节课的重点知识。这一环节不仅帮助学生巩固了新学的内容,而且通过构建知识框架,提高了学生的知识整合能力。总体而言,这套PPT课件通过理论讲解、实践操作和课堂小结等多种教学手段,全面提升了学生对物质组成的表示的理解和应用能力。通过本节课的学习,学生将能够更加熟练地读写化学式,并能够根据元素的化合价正确书写化学式,为后续的化学学习奠定坚实的基础。
本套PPT课件为人教版化学九年级上册物质组成的表示第二课时精心打造,共25张幻灯片,旨在帮助学生深入理解化合价的概念,掌握常见元素的化合价,并能够根据化合价正确书写化学式以及通过化学式判断化合价,以此培养和提升学生的逻辑思维能力。课程的第一部分专注于化合价的基础知识。课件依据化合物中正负化合价代数和为零的原则,引导学生判别元素的化合价,并提供了常见元素的化合价口诀,以便学生记忆和掌握。这一部分的教学不仅让学生理解化合价的科学原理,而且通过口诀的形式,帮助学生快速记忆化合价,为后续的学习打下坚实的基础。第二部分则将焦点放在化合价与化学式的关系上。课件详细讲解了十字交叉法和最小公倍数法两种书写化学式的方法,并通过四种常用的应用题型,帮助学生熟练掌握如何运用化合价来书写化学式。这一环节的设计旨在通过实际操作,加深学生对化合价应用的理解,提高他们的解题技巧。在课堂的最后部分,课件通过小结环节,引导学生回顾和总结本节课的重点知识点。这一环节不仅帮助学生巩固了新学的内容,而且通过构建知识框架,提高了学生的知识整合能力。总体而言,这套PPT课件通过理论讲解、方法介绍、实践操作和课堂小结等多种教学手段,全面提升了学生对化合价和化学式表示的理解和应用能力。通过本节课的学习,学生将能够更加熟练地运用化合价来书写和解读化学式,为后续的化学学习奠定坚实的基础。
本套 PPT 是北师大版四年级下册数学 “字母表示数(试一试)” 第 2 课时的课件,主要围绕 “用字母表示公式、运算律及数量关系” 展开教学。课件以 “字母表示年龄、电视台标识” 作为课前引入,通过生活中常见的字母应用实例,自然地将学生引入数学学习的情境中,激发他们的学习兴趣。在核心教学环节,课件通过四个任务逐步推进。首先,以正方形周长计算为例,引导学生学习用字母表示公式,并明确 “数字与字母相乘时乘号可简写(如 4a 写作 4a)” 的规则,帮助学生掌握字母表示数的基本规范。接着,结合 “a 张桌子的腿数、a 元书买 4 本的总价” 等实际问题,让学生体会含字母式子的实际意义,感受字母表示数的简洁性和实用性。然后,进一步拓展到用字母表示正方形面积、长方形周长和面积,以及加法和乘法运算律,帮助学生系统地掌握字母表示数的方法,提升符号化思维能力。在巩固练习部分,课件设计了多样化的练习题,涵盖行程、购物、图形规律等实际应用场景,通过这些练习,学生能够进一步巩固所学知识,提升运用字母表示数解决实际问题的能力。此外,课件还补充了韦达系统用字母表示数的数学史知识,增强了学科的趣味性,拓宽了学生的数学视野。整套课件以 “生活关联→公式表示→规则明确→应用拓展” 为逻辑主线,既落实了字母表示数的规范,又渗透了符号化思想。这种教学设计充分契合四年级学生的认知节奏,能够帮助学生在轻松愉快的学习氛围中逐步建立起对字母表示数的清晰认识,为后续学习代数知识奠定坚实基础。
该PPT以幻灯片的形式介绍了第三章3.1+铁及其化合物(第2课时)的内容,帮助教师在使用PowerPoint时更好的介绍铁的氧化物和氢氧化物的相关内容。在本节课中,教师通过对砖块的例子分析进行课程导入。本节课的内容分为两大部分。第一部分的内容是铁的氧化物,对铁及其氧化物分类及物理性质,化学性质进行了详细的学习。第二部分的内容对铁的氢氧化物的性质制备及转化进行了深入的学习了解,在对应此题中练习知识。
本套PPT模板在内容上首先介绍了本节课的教学目标,包括理解分散系的概念及其组成、了解胶体的性质及丁达尔效应等;接着让学生欣赏自然界中光束的图片,思考光束形成的原因,复习了分散系的定义,并介绍了分散系的类型,包括溶液、乳浊液、悬浊液等;然后阐明了分散系分类的标准,包括分散质状态和分散质粒子的大小等;最后介绍了胶体的制备和性质,并带领学生完成对应训练;
PPT全称是PowerPoint,麦克素材网为你提供人教a高一数学必修第一册3.1.2函数的表示法(第1课时)课件含教案PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。