本套PPT课件专为人教版数学九年级下册“实际问题与反比例函数”章节精心打造,共24张幻灯片。其核心目标是助力学生精准识别实际问题中隐藏的反比例函数关系,能够准确无误地列出反比例函数表达式,并熟练运用相关知识求解实际问题中的未知量。同时,着重培养学生从具体情境中抽象出数学模型的能力,从而提升学生的数学抽象思维水平,使学生能够将抽象的数学知识灵活应用于实际问题的解决中。课件内容从九个方面展开。首先,在复习巩固环节,通过对上节课知识的回顾,巧妙地引出本节课的主题,为学生搭建起新旧知识的衔接桥梁,使学生能够顺畅地进入新知识的学习状态。接着,在探究新知部分,引导学生深入探究实际问题与数学模型之间的内在联系,通过分析具体实例,让学生逐步发现实际问题中反比例函数关系的影子,激发学生的探究兴趣和主动性。第三部分的归纳小结,帮助学生梳理前两部分的学习内容,初步构建知识框架。第四至第六部分,即典例分析、针对训练和能力提升,是课件的核心环节。通过精选的例题详细讲解,让学生清晰地看到如何将实际问题转化为反比例函数模型,并运用所学知识求解。针对训练则让学生在实践中巩固所学,及时发现并解决问题。能力提升部分则进一步拓展学生的思维,引导学生挑战更高难度的问题,提升综合解题能力,这几个部分环环相扣,层层递进,通过大量练习帮助学生加深对反比例函数概念与性质的理解,强化从具体情境中抽象出数学模型的能力。第七部分直击中考,选取与中考相关的实际问题与反比例函数题目进行分析讲解,让学生提前感受中考题型,明确考试方向和解题要求,增强学生的应考信心。第八部分再次进行归纳小结,强化学生对本节课重点知识的掌握,帮助学生进一步完善知识体系。最后的布置作业环节,精选适量的习题,既包括对基础知识的巩固,也涵盖一些拓展性题目,旨在让学生在课后能够及时复习,深化理解,同时检验学生对本节课知识的掌握程度,为教师后续的教学调整提供参考依据。通过这一套精心设计的PPT课件,学生能够在系统的学习过程中,逐步掌握实际问题与反比例函数之间的联系,提升解决实际问题的能力,为中考数学取得优异成绩奠定坚实基础。
这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是新课导入。PPT的第二个部分向我们介绍的是想一想,观察以下的函数等等内容。PPT的第三个部分向我们介绍的是旧知回顾,应用新知等等内容。PPT的第四个部分向我们介绍的是看图理解等等内容。PPT的第五个部分向我们介绍的是试一试,应用新知解题。PPT的第六个部分向我们介绍的是课堂总结。
PPT模板从四个部分来展开介绍关于《函数》的教学内容。PPT模板的第一部分采用复习的方式来进行导入,并回顾了上节课的重点内容。第二部分创设了三个问题情境,并引导学生思考三个式子的共同特征,从而总结归纳出了函数的概念。第三部分展示了与函数相关的练习题目来辅助学生巩固本节课所学的知识。第四部分总结了本节课的重点知识。
该演示文稿以幻灯片的形式分四个部分介绍了excel公式和函数的使用,方便我们在使用PowerPoint时更好的了解常用的公式和函数。PPT模板的第一部分是使用的公式和函数,介绍了一些常用的公式和函数。第二部分是公式中的引用设置,介绍了引用单元格或单元格区域、相对引用、绝对引用、混合引用等内容。第三部分是公式中的错误与审核,介绍了追踪导致公式错误的单元格、追踪产生循环引用的单元格等内容。第四部分是数组公式及其应用,介绍了数组公式的建立方法和使用规则。
这个PPT主要分为四个部分。PPT的第一个部分向我们介绍的是一件事一次办的总体要求:包括指导思想、工作目标、基本原则。PPT的第二个部分向我们介绍的是推进企业全生命周期相关政务服务等等内容。PPT的第三个部分向我们介绍的是优化服务模式,包括简化申报方式,科学设计流程、统一受理方式、加强综合监管,建立联办机制,加强能力建设等等内容。PPT的第四个部分向我们介绍的保障措施:包括加强组织领导,加强协同配合、加强评价监督、加强宣传引导是等等内容。
PPT模板首先在前言部分说明了此次党课的重要性与必要性,然后将整体分为四个部分来开展本次改革开放是党的一次伟大觉醒的党课。第一部分是改革开放明确前进方向,PPT模板详细介绍了改革开放的背景、必要性、原因以及它的诞生。第二部分是改革开放成功开辟新路,明确提出中国面临着三种道路的抉择。第三部分是改革开放赶上新的时代,诉说了改革开放对中国新时代发展的重要意义。第四部分是改革开放顺意人民意愿。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关部编版四年级语文《记一次游戏》课件的相关内容,共计15张幻灯片。PPT模板内容第一部分主要向我们详细的介绍了有关情景导入的内容,主要通过问学生喜欢什么样的游戏来引入今天课程的主题。第二部分主要向我们详细的讲述了有关盲人敲鼓游戏的内容。最后一部分主要向我们详细的展示了有关习作范例和课堂小结的内容。
这份PowerPoint由四个部分构成。第一部分内容是对森林康养的认识,该模板首先从国家层面进行阐述,其次是部门和当地政府层面,最后是从经济层面进行介绍。第二部分内容是森林康养规划要点,这一部分主要介绍森林康养基地规划需考虑的4点,包括基础条件、空间布局、产业融合和特色服务。第三部分内容是森林康养项目规划,这一部分主要包括制定标准、业态分级、案例介绍与思路分析。第四部分内容是森林康养总体布局。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于高效沟通会议学习课件的相关内容。PPT模板内容第一部分主要向我们详细的讲述了有关于职场必备的相关技能。第二部分主要向我们列举了会议经常会出现的问题。第三部分是有关于高效会议的标准。第四部分是有关于会议成效的评估。第五部分是会议相关准备工作。最后一部分主要向我们详细的讲解了高效会议的技巧。
这是一套专为初中八年级语文下册课文《最后一次讲演》设计的教学PPT课件动态模板,内容丰富、结构清晰,共包含34页。课件围绕课文情节、文章主旨、作者简介等核心内容展开,旨在帮助学生深入理解文本,提升语文素养。课件首先明确了本节课的教学目标,包括了解作者闻一多及其作品,把握演讲稿的格式和内容,感悟演讲稿语言的特点,并学习其写作技巧。这些目标为学生的学习提供了清晰的方向,也为教师的教学提供了明确的指引。在演讲词的定义和特点方面,课件进行了详细阐述。演讲词作为一种特殊的文体,因其具有宣传、鼓动和教育的作用,语言往往具有极强的感染力。课件强调了演讲词的四大特点:针对性、鲜明性、条理性和情感性。通过这些特点的讲解,学生能够更好地理解演讲词的独特魅力和写作要求。接下来,课件深入介绍了作者闻一多的生平经历和主要成就。闻一多是中国现代文学史上杰出的诗人、学者和民主战士,他的生平经历与时代背景紧密相连,为学生理解《最后一次讲演》的创作背景提供了重要依据。课件还特别指出,文章标题“最后一次讲演”是以闻一多先生实际的人生经历为题,体现了这篇演讲稿的深刻历史意义和情感价值。在基础知识训练部分,课件设计了针对性的练习,帮助学生掌握课文中的生字、生词和重要语句。这一环节不仅夯实了学生的语文基础,还为深入理解课文内容提供了有力支持。课件的核心部分是引导学生精读课文,理清作者的写作思路。通过寻找演讲词中代表情感色彩的词汇,学生能够感知文章整体的表达效果,并学习如何运用这种写作方式。这种教学设计不仅帮助学生理解文本,还提升了他们的写作和口语表达能力。最后,课件通过总结和拓展,鼓励学生将所学知识运用到实际写作和演讲中,进一步提升综合语文素养。通过这样的教学设计,学生不仅能够深入理解《最后一次讲演》的内涵,还能从中汲取精神力量,培养爱国主义情怀和民主精神。整套课件设计科学合理,内容丰富实用,形式生动多样。它为教师提供了清晰的教学思路,为学生提供了系统的知识体系,能够有效提升课堂教学效果,激发学生的学习兴趣和积极性。
这份PowerPoint由四个部分构成。第一部分内容是单元知识体系梳理,该模板首先对简易方程的题型进行归纳总结,包括用字母表示数和解简易方程。第二部分内容是重难点易错点剖析,这一部分首先展示了相应的习题,其次对做题技巧进行展示,最后对做题注意事项进行简要说明。第三部分内容是变式巩固练习,这一部分主要包括《解方程》、《选一选》。第四部分内容是综合拓展延伸。
这套PPT模板是为五年级数学上册第5单元“简易方程”的期末复习而精心制作的,共包含25张幻灯片。本节课的教学目标是引导学生熟练掌握用字母表示数的方法,准确理解方程的概念,熟练运用解方程的技巧,并能够将方程应用于解决实际问题。模板的第一部分是简易方程的思维架构展示。这一部分旨在帮助学生构建一个完整的简易方程知识体系。通过这一架构,学生可以将之前所学的零散知识点进行整合,形成一个系统化的知识框架。这不仅有助于学生对每一部分知识的深入理解和牢固掌握,还能引导学生掌握有效的学习方法,培养他们的逻辑思维能力和知识整合能力。学生在掌握了良好的学习方法后,将能够更加高效地学习和复习,为今后的学习奠定坚实的基础。第二部分是知识精讲环节。这一环节详细介绍了用字母表示数、解简易方程、列方程解应用题这三个核心知识点。每个知识点都配有精心设计的例题,通过例题讲解的方式,检测学生对知识点的掌握情况,及时发现学生的薄弱点。针对学生的薄弱点,教师可以进行有针对性的训练和指导,帮助学生克服学习中的困难,提高解题能力。这种有针对性的训练不仅能够巩固学生的知识基础,还能提高他们的数学成绩,使学生在期末考试中能够更好地应对与简易方程相关的题目。此外,这套PPT模板的设计注重知识的逻辑性和层次性,使学生在复习过程中能够循序渐进地掌握知识。通过系统的复习和练习,学生将能够更加自信地面对期末考试,提高数学成绩。总之,这套PPT模板是一份非常实用的复习资料,能够有效地帮助学生巩固和提升对简易方程的知识掌握,为今后的学习和发展奠定坚实的基础。
这是一套专为北师大版七年级数学上册第五单元“5.1 认识方程”设计的教学演示文稿,共由34张幻灯片组成,内容编排层层递进,既体现知识逻辑,又兼顾学生认知规律。整堂课以“情境—探究—应用—反思”四环节为主线:教师先通过贴近生活的真实情境抛出悬念,让学生在具体问题中感受到“未知数”的存在价值,从而自然导入新课;随后呈现三道精心筛选的实际案例,学生按题意尝试列出不同式子,教师再组织小组讨论,共同提炼这些式子的共性——含有未知数且为等式,顺势给出方程的严谨定义。概念建立后,学生立即进行“对号入座”式练习,判断所给式子是否为方程,在纠错与辩论中完成第一次巩固。紧接着,教师布置两道“生活化”小任务:一是根据班级图书角补充读本的预算列出方程,二是根据校运会跳绳记录猜测未知成绩,引导学生在独立操作中体会“抽象—建模—求解”的完整过程,知识应用能力由此提升。课堂尾声,教师借助思维导图与学生一起回望“我学到了什么”——方程的“长相”、一元一次方程的“身份”、解与解方程的“区别”,并预留开放性作业:拍摄一段30秒小视频,用身边事例解释“方程其实就是把悄悄话变成数学语言”,让学习从课堂延伸到生活。整套PPT分为五大板块:第一板块以“看得见的目标”明确三维要求——知识、能力、情感;第二板块借《九章算术》“盈不足”古题激趣,点明本章学法——“带着未知数看问题”;第三板块通过“对比—归纳—定义”三步完成概念探究;第四板块设置星级闯关题,基础、变式、拓展层层加码;第五板块用“一句话总结+一分钟微测+一道实践题”收尾,确保学情当堂清、方法随身走。
这份五年级下册“用方程解决问题”单元复习课件以“思维导图—知识盘点—易错警示—考点精练”四步递进,把axx=b、相遇问题及生活应用串成一条清晰的“方程链”,助力学生从“会解”跃升到“会列、会思、会用”。开篇用一张彩色思维导图总览三大核心:和差倍方程、相遇方程、稍复杂应用,一眼锁定复习范围。知识盘点用“表格+口诀”双通道:axx=b突出“乘法分配律合并同类项”,相遇问题强调“甲路程+乙路程=总路程”,每条配生活图标,让抽象等量关系“有图可依”;易错攻略集中曝光4大陷阱:合并同类项漏写、设未知数不统一、等量关系找反、单位1设错,用“错题医院”形式呈现,学生用“找茬”方式圈错并口述正解,加深印象。考点精讲练精选4大生活情境:①和差倍——公园花盆“多3倍少20””;②年龄——父子年龄差不变;③相遇——两车不同速度相向而行;④稍复杂——需分段计费或考虑休息,每题配“分析+解答+易错提醒”三栏,动画演示“线段图—等量关系—解方程”全过程,学生先独立试做,再对照讲解,系统实时统计正确率,教师针对“设句写反”“等量漏加”再示范,确保“会找倍、会设x、会检验”全程过关。总结用“一张思维导图”收束:设x→找等量→列方程→检验,学生用便利贴写下最易错点贴于展板,形成班级“方程警示墙”;自我评价从“我敢设x、我会找倍、我肯检验”三面点赞,小组互评贴星星,让知识、情感双提升。整份课件用“导图导航—错因曝光—典例精讲—即时反馈”四连击,把用方程解决问题从“套题型”升级为“会建模、会检验”的代数思维,既突破“找等量关系”难点,又培养逻辑与建模能力,为期末综合解决实际问题奠定坚实的方法与信心双重基础。
本套 PPT 是北师大版四年级下册数学 “方程” 第 4 课时的课件,主要围绕 “方程的意义与等量关系” 展开教学。课件以 “猜谜语(天平)+ 看图写等量关系” 作为课前引入,巧妙地将生活中的数量关系与数学知识相衔接,激发学生的学习兴趣,为后续学习奠定基础。在核心教学环节,课件通过四个任务逐步推进。首先,借助天平、种子、水壶等生动的情境,引导学生用含字母的式子表示等量关系,从而引出 “等式” 的概念。接着,明确指出 “含有未知数的等式是方程”,并提炼出方程需要满足的两个条件:一是等式,二是含有未知数。随后,通过对比和讲解,帮助学生理清等式与方程的关系,即方程是特殊的等式,进一步深化学生对方程概念的理解。在巩固练习部分,课件结合天平、生活场景等实际情境,设计了丰富的列方程练习,帮助学生在实践中巩固所学知识,提升运用方程解决实际问题的能力。此外,课件还补充了丢番图的代数史知识,增强了教学内容的趣味性,拓宽了学生的数学视野。整套课件以 “情境→抽象→辨析→应用” 为逻辑主线,借助直观场景将抽象的方程概念具象化,既落实了方程的定义与列写方法,又渗透了符号意识,培养了学生的数学思维能力。这种教学设计充分契合四年级学生的认知水平,能够帮助学生在轻松愉快的学习氛围中,逐步建立起对方程概念的清晰认识,为后续学习方程的解法奠定坚实基础。
本套 PPT 是北师大版四年级下册数学 “解方程(二)” 第 6 课时的课件,主要围绕 “等式的性质(二)及解方程” 这一核心内容展开教学。课件以 “解方程回顾” 作为课前引入,帮助学生复习等式性质(一)以及解方程的基本步骤,为后续学习做好铺垫。在核心教学环节中,课件借助天平称重的情境,通过直观演示引导学生探究等式的性质(二),即 “等式两边同时乘或除以同一个不为 0 的数,等式仍然成立”。这一过程不仅激发了学生的学习兴趣,还帮助他们从直观现象中抽象出数学规律。随后,课件指导学生运用这一性质解决 “ax=b” 和 “xa=b” 型方程,并强调解方程的规范流程:写解、对齐等号、检验答案,帮助学生养成良好的解题习惯。为了进一步巩固学生的学习成果,课件通过典例分析,纠正解方程过程中常见的错误,帮助学生避免易错点。在达标练习环节,课件设计了多样化的练习题,包括 “森林医生” 纠错、解方程以及运用方程解决长方形、正方形的周长和面积等实际问题。这些练习题不仅检验了学生对等式性质的理解,还强化了他们解方程的实操能力,同时培养了学生运用数学知识解决实际问题的能力。整个课件以 “猜想 - 验证 - 应用” 的逻辑顺序展开,结合直观的天平演示和分层练习,既落实了等式性质的理解,又强化了解方程的实操与应用。这种教学设计贴合四年级学生的认知节奏,能够有效帮助学生在理解数学概念的同时,提升解题能力和数学思维水平。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于二次函数图像解题学习课件的相关内容。PPT模板内容第一部分主要是关于本节课的学习目标,要求同学们能够通过二次函数的图像来解决相关的实际问题。第二部分主要是有关于二次函数的图像性质的讲解。第三部分主要向同学们详细的讲解了有关于利用二次函数的图像性质确定字母的值的相关内容。最后一部分是有关于二次函数的实际应用。
这套《人教A版必修第一册 4.4.1 对数函数的概念》PPT 课件共 36 张,以“历史溯源—情境建模—符号抽象—迁移应用”为脉络,引领高一学生完成从“幂运算”到“对数运算”的视角转换。课程目标定位于:理解并熟记对数函数 y=log_a x 的严格定义,准确写出其定义域 (0, +∞) 与值域 (-∞, +∞);能依据定义快速判断给定解析式是否为对数函数,并能处理含参、含根号、含分式等复杂情境下的定义域求解;同时通过“化指数问题为对数问题”的转化实践,发展学生的数学建模素养与数形结合能力,培养以函数视角整体把握变化规律的意识。课件内容分四大板块展开。第一板块“对数函数的概念及应用”从数学史切入:先简介对数创始人纳皮尔的生平与 400 年前“化乘为加”的革命性思想,再通过“地震里氏震级每增 1 级能量增 32 倍”的真实问题,引导学生列出指数方程 32^x = 10^y,进而产生“已知幂值求指数”的强烈需求,自然引出 log_a b 的符号表达;接着用双向箭头直观呈现指数式 a^b = c 与对数式 log_a c = b 的等价互化,帮助学生建立“指数—对数”一一对应的整体框架。第二板块“对数函数模型的应用”设置三道梯度任务:①手机拍照亮度调节遵循 log 模型,让学生用图像直观感受“亮度对数级差 0.3,人眼恰可分辨”;②溶液 pH 值计算,把氢离子浓度指数方程转化为对数函数,体验跨学科价值;③银行复利转连续复利,通过 ln(1+r)≈r 的近似,让学生领悟对数在简化运算中的威力。每例均配有 GeoGebra 动态演示,强化“形”与“数”的同步认知。第三板块“题型强化训练”聚焦两大核心能力:一是“概念辨析”——5 道选择题让学生在给定解析式中快速识别对数函数,并说明底数 a0 且 a≠1、真数 x0 的限定原因;二是“定义域求解”——由易到难呈现 4 道典型题:含根式√(log_2 x)、含分式 1/log_3 (x-1)、含参数 log_a (x-a) 等,教师现场示范“三步法”:列不等式、解不等式、用数轴检验,确保学生学得会、做得对。第四板块“小结与随堂练习”首先由学生独立绘制“对数函数知识速写卡”,涵盖定义、底数限制、定义域、值域、互化公式五要素;教师再补充“函数三看”口诀:看底数、看真数、看定义域。随后推送 6 题分层随堂检测:前 3 题聚焦基础概念,后 3 题融入实际情境,现场扫码提交即时统计,实现精准反馈。整份课件以“历史故事激趣—真实问题驱学—多元训练固能—反思导图提能”的闭环设计,帮助学生在“数”与“形”的往复对话中真正掌握对数函数的本质与力量。
这套人教A版高一数学必修第一册 3.4《函数的应用(一)》的PPT课件共70页,旨在帮助学生深入理解函数模型在实际问题中的应用,并掌握用函数模型解决实际问题的基本步骤。通过具体实例,引导学生自主探究函数模型的应用,激发学生对学习数学的兴趣,培养学生的数学思维能力和应用能力,让学生感受到数学在实际生活中的广泛应用。课件内容围绕四个板块展开:第一部分:分段函数模型的应用这一部分通过具体实例,帮助学生了解解决实际问题的一般步骤,包括审题、建模、求模、还原。例如,通过分析出租车计费、阶梯电价等实际问题,学生将学习如何将复杂问题分解为多个阶段,并用分段函数进行建模。通过具体的解题步骤,学生能够掌握如何根据实际情境选择合适的函数形式,如何求解函数模型,并将结果还原到实际问题中。这种系统化的解题方法不仅帮助学生理解分段函数的应用,还提升了他们的逻辑思维能力。第二部分:用函数模型解决实际问题在这一部分,课件通过一系列实际问题,展示了如何用函数模型解决实际问题。这些问题涵盖了经济、物理、生物等多个领域,如成本与收益分析、物体运动轨迹、种群增长等。通过具体的函数模型(如一次函数、二次函数、指数函数等),学生将学习如何根据问题的特征选择合适的函数类型,如何通过函数模型进行预测和决策。这些实例不仅帮助学生理解函数模型的多样性,还展示了数学在不同领域的广泛应用。第三部分:题型强化训练为了巩固学生对函数模型的理解和应用能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的函数模型,包括分段函数、一次函数、二次函数、指数函数等,帮助学生在多样化的题目中灵活运用所学知识。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。通过重复练习,学生能够熟练掌握解题方法和技巧,提升解题速度和准确性,增强对函数模型应用的掌握。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括分段函数模型的应用、用函数模型解决实际问题的基本步骤等。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从具体实例到系统总结、从理论到实践的逐步引导,帮助学生全面掌握函数模型的应用。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
本套课件共44页,围绕人教A版《数学必修第一册》3.1.1节“函数的概念”(第1课时)精心设计,是一堂集知识建构、思维训练与素养提升于一体的新授课。课堂结束后,学生将在以下方面获得显著收获:一是能够准确理解函数的本质内涵,牢固掌握“定义域、对应关系、值域”这三大核心要素;二是具备辨析两个函数是否相同的能力,能够运用集合与对应的观点进行严谨论证;三是通过教师呈现的大量生活化实例与层层递进的对比探究,亲历概念生成的全过程,在“举三反一”中发展抽象概括与逻辑推理等数学思维品质;四是深刻体会函数在刻画变化规律、解决实际问题中的价值,感受数学与现实世界的紧密联系,从而激发持续的学习兴趣。课件结构清晰,由四大板块构成。第一部分“初识概念”从学生已有经验出发,借助“投信与邮箱”“出租车计价”等形象情境,抽象出对应关系,并通过类比、归纳等思维方式回顾初中“变量说”,自然过渡到高中“集合-对应说”的严格定义,实现认知的螺旋上升。第二部分“三要素解读”依次展开:先用通俗语言阐释“定义域是舞台、对应关系是剧本、值域是演出效果”的比喻,帮助学生建立整体图景;再系统梳理解析式、图像、列表、语言描述等多种表征方式,强调“形异质同”的转化思想;最后通过“判断两个函数是否相同”的典型错例,强化“定义域与对应关系完全一致”的判别标准。第三部分“题型强化”精选两类训练:一是“单项选择”快速诊断易错点,如忽视定义域限制、混淆对应顺序等;二是“解决问题”设置“阶梯水费”“疫情传播模型”等真实任务,引导学生用函数观点建模、运算、解释,体验完整的数学应用流程。第四部分“回顾提升”先以时间轴呈现函数概念从莱布尼茨到康托尔的演进史,彰显数学文化;再用“五点说明”——对象、符号、语言、思想、价值——进行课堂总结,配以即时检测与分层作业,确保学生带着问题来、带着方法走、带着兴趣学。整堂课以“情境—问题—探究—应用—反思”为主线,既关注知识的系统性,又突出思维的深刻性,最终实现“教、学、评”一体化的教学目标。
PPT全称是PowerPoint,麦克素材网为你提供一次函数与方程PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。