2020年7月23日,中国少年先锋队第八次全国代表大会在北京开幕。本次大会采取电视电话会议的形式召开,大会听取和审议第七届全国少工委工作报告,修改少队章程,选举产生第八届全国少工委等议程。这套党政风格的少年先锋队第八次全国代表大会PPT模板素材,一起了解学习中国少年先锋队第八次全国代表大会的相关知识。
该PPT以《生物多样性公约》为主题,内容上,该PPT模板从3个大方面阐述主题。第一方面是大概阐述了《生物多样性公约》是什么,目的是保护濒临灭绝的动植物,最大限度保护地球的生物多样性。第二部分是第十五次缔约方大会主要情况,说明了大会的举办背景,大会进程和大会意义。最后是对第十五次缔约方大会领导人峰会讲话的解读。共同守护地球生物多样化。
这个PPT主要分为五个部分。PPT的第一个部分向我们介绍的是四川省待会的基本情况,第二个部分向我们介绍的是过去五年的所作出的成绩,第三个部分向我们介绍的是如何坚定沿着习近平总书记的指示方向前进。第四个部分向我们介绍的是如何全面建设社会主义现代化四川新征程。第五个部分向我们介绍的是如何在未来进一步发展制定了具体的规划。
PPT模板主要展示了以海南省第八次代表大会为课件的主题,表达出学习党课内容的重要思想。PPT背景颜色以白色、红色两种颜色为主,装饰以城市建筑、党徽、信纸、钢笔等元素所组成,营造出庄重、严肃的氛围。PPT内容主要介绍了本次会议的基本简介和过去五年内的历史回顾,以及所制定的今后五年的总体要求、重点任务、奋斗目标等核心内容。
这个PPT主要分为两个部分。PPT的第一个部分向我们介绍的是关于山东省第十二次党员代表大会的基本情况,包括会议的时间、参会情况、参会人员、主要议程、报告主题等等内容。第二个部分向我们介绍的是关于山东省第十二次党代会报告的全文解读,大会回顾了过去五年奋斗取得的重大历史性成就,并且对未来的发展作出了具体的规划和部署。
PPT模板第一部分对会议的基本情况进行了介绍,包括参加会议的人员、召开的时间、大会的主题和主要议程。第二部分对甘肃省第十三次党代会以来的五年成就做了深刻的总结,解决了绝对贫困问题,综合经济实力明显提升,生态环境发生显著变化,人民生活大幅改善。第三部分介绍了今后五年的总体要求和奋斗目标,在新的起点上开启新征程。第四部分介绍了未来工作的重点任务。
PPT模板第一部分概括了四川省第十二次代表大会的基本情况。第二部分汇报了四川省五年间的建设成果和发展进度,展示了一份高质高量的新业绩。第三部分表明了重要领导书记对四川的殷切期望,坚定向着重要领导书记指引的方向前进。第四部分对全面建设社会主义现代化四川新征程的美好蓝图进行展望,详细说明了对今后五年的发展目标。第五部分从各方面总结四川省的发展方向,表明各级党组织以及广大党员的坚定信念和以四川建设推动国家发展的宏伟志向。
本套PPT模板共分为前言、会议内容概述、省第十三次党代会的五年、今后五年的总体要求与奋斗目标、未来工作的重点、结语共六个部分;第一部分简要介绍了会议的时间和地点、会议的主要议程以及会议的主题;第二部分展示了近五年来甘肃省在党的领导下取得的巨大成就与进步;第三部分阐述了未来五年甘肃省的发展方向与相关政策,包含经济发展、绿色转型、人民生活水平、社会治理效能、社会文明程度等五个方面;最后指出了党的未来工作重点,涵盖了生活,环境,社会等方方面面;
这份PowerPoint由五个部分构成。第一部分内容是故事传说。PPT模板首先介绍了鲤鱼跃龙门故事的经过过程。第二部分内容是原因分析,这一部分一方面介绍了鱼为什么跳水的原因,主要是为了繁衍后代,另一方面介绍了龙门赤河的现象。第三部分内容是鲤鱼寓意,这一部分主要介绍了鱼与爱情、思念、自由关系。第四部分内容是诗词文化,展示了三首与鲤鱼相关的诗词。第五部分内容是精神追求。
这份由二十三张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的图像》第二课时,以“从特殊到一般”为线索,引导学生在正比例函数的基础上进一步探究一次函数y=kx+b的图像特征与性质,实现“会画图、能识图、会用图”的三重目标。课堂流程依旧五步递进:回顾旧知—情境导入—新知探究—典例巩固—课堂小结。开篇“回顾旧知”用动态直线快闪:正比例函数图像过原点,k决定上升或下降,学生边口述边用手势比斜率,教师顺势板书“列表—描点—连线”三步骤,为后续探究奠定方法基础。紧接着“情境导入”抛出共享单车计费场景:起步价1元含前2公里,之后每公里0.5元,学生列出解析式y=0.5x+1,发现“不再过原点”,自然产生“新图像长什么样”的疑问。“新知探究”分三步走:先在同一坐标系内分组画出y=2x、y=2x+3、y=2x-2,观察发现三条直线平行,b值让图像上下平移;再改变k值正负,对比y=2x+1与y=-2x+1,归纳k>0上升、k<0下降、b定交点(0,b)的性质口诀;最后用GeoGebra动态拖动k与b,实时预览直线旋转与平移,学生直观感受“斜率定方向,截距定位置”的数形对应。“典例巩固”采用“一题三问”:给出y=-3x+4,先列表描点验证直线,再求x=-1时的函数值,最后判断点(2,-2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求根据图像写解析式并比较函数值大小,实现“所见即所考”。结课用“思维导图快闪”:k定方向、b定位置、两点定直线三节点依次展开,学生口头接龙补充易错点;作业分两层:A层完成教材配套画图与判断,B层测量家中水龙头放水时间与接水量,验证是否为一次函数并画图像,把课堂发现带回生活。整套课件通过“动态对比—即时观察—口诀归纳”的闭环,不仅让学生真正理解“解析式与图像一一对应”,更在“画一画、看一看、比一比”的亲历中,深刻体会数形结合思想,为后续学习一次函数应用、与方程不等式综合奠定坚实的图像与性质双重基础。
PPT模板内容主要从两个部分来展开介绍有关发挥慈善事业第三次分配作用推动共同富裕主题党课的相关内容。PPT模板内容第一部分主要向我们强调了我们应该坚持问题导向,着力解决慈善事业在发挥第三次分配作用中面临的一些问题和不足。第二部分主要向我们详细的阐述了我们应该在制度层面上,将发展公益慈善事业作为推进共同富裕实践机制的几点建议。
这份PPT主要由三个部分组成,以幻灯片的形式放映方便大家观看演示文稿的相关内容。该模板首先介绍了第二个结合。第一部分内容是思想解放探索历程,首先介绍第一个结合的发展过程,其次介绍第二个结合的内容。第二部分内容是思想解放聚焦问题靶向,这一部分主要从传统和现代、中与西、中华优秀传统文化与马克思主义的关系上进行介绍。第三部分内容是思想解放的时代新创造,这一部分主要对第二个结合的影响进行了介绍,包括提供精神动能、因为文化结合、赴履中国道路。
这份PPT由四个部分组成。第一部分内容是会议内容,此模板主要展示了会议强调和指出的内容。第二部分内容是全会提出的观点,这一部分首先介绍了中国式现代化的重要保障,其次展示了建设社会主义现代化国家的首要任务,最后对中国式现代化的本质要求进行介绍。第三部分内容是全会提出的内容,这一部分一方面要协调好物质文明和精神文明,另一方面要不断改善和保障民生,同时促进人与自然和谐共生。第四部分内容是当前形势和任务。
本套PPT模板在内容上分为明确习作要求、回忆过往选择材料、借助视频共学方法、拟写思维导图尝试写作、评价作文共计五个部分;第一部分介绍了主题“那次玩得很高兴”的由来,与培根的名言警句相关,以及写作的要求,包括材料来源真实、参与者多人且有互动等;第二部分让学生回忆过往,选择写作的材料,确定时间地点人物等写作要素;第三、四部分赏析了例文,介绍了写作秘诀;第五部分介绍了写作的评价指标;
这是一套专为初中数学七年级下册《三元一次方程组的解法》课程设计的PPT课件模板,总页数为20页。该课件模板以清晰的教学结构和丰富的教学内容,帮助学生系统地学习和掌握三元一次方程组的解法,同时提升学生的数学思维和解题能力。课件的开篇部分明确列出了本节课的学习目标,旨在让学生了解三元一次方程的概念,掌握其解法,并通过学习提高分析问题和解决问题的能力。这些目标为学生的学习提供了明确的方向,也为教师的教学提供了清晰的指引。为了帮助学生更好地进入本节课的学习,课件通过复习上节课学习的二元一次方程组的解法进行引入。通过对二元一次方程组解法的回顾,帮助学生巩固已学知识,同时为学习新的三元一次方程组的解法做好铺垫。接着,课件进入合作探究环节。在这一部分,教师引导学生对情境问题进行探究和分析,将实际问题转化为具体的三元一次方程。通过逐步消元的方法,学生能够逐步掌握三元一次方程组的解题思路。这一环节不仅帮助学生理解三元一次方程组的结构,还培养了他们的自主学习能力和团队协作精神。随后,课件进入典例分析阶段。通过一个典型的三元一次方程组,详细展示了从方程组的建立到逐步消元求解的全过程。在讲解过程中,教师可以引导学生逐步思考和解决问题,帮助他们掌握三元一次方程组的具体解法。为了进一步巩固学生对知识的理解,课件还设计了四组三元一次方程组的练习题,让学生在实践中加深对解法的掌握。在实践部分,课件再次通过典例分析讲解,进一步强化学生对三元一次方程组解法的理解和应用。随后的巩固练习环节,通过多样化的题目设计,帮助学生巩固刚学到的知识,提高解题能力。在课程的总结部分,课件对本节课的内容进行了全面的归纳总结。首先复习了三元一次方程组的概念和解法,帮助学生梳理知识体系。通过系统的总结,学生能够更清晰地理解三元一次方程组的解题思路和方法。最后,课件对三元一次方程组的解法进行了梳理总结,并布置了作业。作业分为必做题和探索性作业两个部分。必做题旨在帮助学生巩固本节课的核心知识和技能,而探索性作业则为学有余力的学生提供了拓展学习的机会,鼓励他们深入探究和思考,培养创新思维和自主学习能力。整体而言,这套PPT课件模板内容丰富、结构合理,既注重基础知识的传授,又注重学生能力的培养。通过系统的教学设计和多样化的练习,能够有效帮助学生掌握三元一次方程组的解法,提升数学解题能力,是一套非常实用的教学工具。
这是一套专为部编版语文四年级下册单元导读《轻叩诗歌大门,乘诗歌之翼,助童心飞扬》设计的PPT课件,共包含32张幻灯片。本课程的核心目标是培养学生对诗歌的热爱,通过收集、整理诗歌的过程,提升学生的语文综合素养。同时,课程鼓励学生大胆表达自己对诗歌的理解和感受,培养学生的语言表达能力和思维能力。课件结构与内容第一部分:诗歌“见面会”课程的开篇以“诗歌‘见面会’”为引子,旨在帮助学生初步了解现代诗歌的特点。通过展示一些经典的现代诗作品,引导学生感受诗歌的韵律、节奏和情感表达。这一环节通过生动的诗歌实例,帮助学生建立起对现代诗的初步认知,激发他们对诗歌的兴趣和好奇心。同时,通过简单的讨论和互动,学生能够分享自己对诗歌的初步感受,为后续的深入学习奠定基础。第二部分:诗歌“鉴赏会”“诗歌‘鉴赏会’”是课程的核心部分,包含四个主要环节:诗社破冰、朗读诗歌、了解现代诗和指导书写。1. 诗社破冰诗社破冰环节通过介绍著名诗人及其代表作品,帮助学生了解诗人的创作背景和风格特点。这一环节不仅拓宽了学生的文学视野,还为学生提供了一个与诗人“对话”的机会。通过了解诗人的生平和创作动机,学生能够更好地理解诗歌的内涵,感受诗人的情感世界。2. 朗读诗歌朗读是诗歌学习的重要环节。PPT通过展示诗歌的朗读技巧,引导学生有感情、有节奏地朗读诗歌。通过反复诵读,学生能够更好地感受诗歌的韵律之美,体会诗歌的情感表达。这一环节通过示范朗读、跟读练习和小组朗读等多种形式,帮助学生提升朗读能力,培养语感。3. 了解现代诗在这一环节,PPT详细介绍了现代诗的定义、特点及朗读方法。通过对比分析,学生能够理解现代诗与传统诗歌的区别,掌握现代诗的独特魅力。同时,通过讲解朗读技巧,学生能够更好地运用这些方法,提升朗读效果。这一环节不仅帮助学生深入理解现代诗,还培养了他们的分析和鉴赏能力。4. 指导书写课程的最后,PPT对单元中的生字词进行了详细指导。通过展示正确的笔顺和书写结构,引导学生规范书写。这一环节不仅帮助学生巩固基础知识,还培养了他们的书写能力,确保学生在学习诗歌的同时,也能掌握扎实的语文基本功。总结整套PPT课件内容丰富,形式多样,通过“诗歌‘见面会’”和“诗歌‘鉴赏会’”两个板块,全方位引导学生走进诗歌的世界。学生在学习过程中不仅能感受到诗歌的魅力,还能通过多样化的学习活动提升语文素养。通过诗社破冰、朗读诗歌、了解现代诗和指导书写等环节,学生能够全面掌握诗歌知识,培养语言表达能力和思维能力。这套PPT课件是教师教学和学生学习的得力助手,能够有效提升课堂教学效果,激发学生对诗歌的热爱和对语文学习的兴趣。
本套 PPT 课件是为北师大数学八年级上册 5.4“二元一次方程组与一次函数(第 1 课时)”设计的教学资源,共包含 21 张幻灯片。本节课的核心目标是帮助学生深入理解二元一次方程组与一次函数之间的内在联系,掌握将二元一次方程组转化为一次函数图像问题的方法,从而提高学生运用数形结合思想解决数学问题的能力。通过本节课的学习,学生将在探索过程中体会数学知识之间的紧密联系,培养严谨的数学学习态度和良好的学习习惯。在内容设计上,PPT 首先通过情境导入,引出本节课的学习主题。情境导入环节通过生动的实例或实际问题,激发学生的学习兴趣,引导他们思考二元一次方程组与一次函数之间的关系,为后续的探究活动奠定基础。接着,PPT 通过具体问题带领学生共同探究二元一次方程与一次函数的图像关系。通过逐步分析和演示,学生能够清晰地看到二元一次方程的图像是一条直线,而两个一次函数的图像交点则对应着二元一次方程组的解。此外,PPT 还深入探讨了二元一次方程组与对应平行直线的关系,帮助学生理解当两条直线平行时,方程组无解的几何意义。通过这种直观的图像分析,学生能够更好地理解抽象的数学概念,提升数形结合的思维能力。在教学方法上,PPT 通过典例分析,针对具体问题进行详细剖析。每个例题都设计了详细的解题思路和步骤,引导学生学会如何将二元一次方程组转化为一次函数图像问题,并通过图像求解方程组。这种以问题为导向的教学方式,不仅能够帮助学生掌握具体的解题方法,还能培养他们的逻辑思维能力和分析问题的能力。为了巩固学生对知识点的理解和应用,PPT 设计了巩固练习和真题感知两个环节。巩固练习环节通过多样化的题目设计,帮助学生进一步熟悉二元一次方程组与一次函数之间的关系,强化对数形结合思想的理解和应用。真题感知环节则通过引入历年真题,让学生提前感受考试题型,增强应试能力。通过这两个环节的练习,学生不仅能够加深对知识的理解,还能在实践中提升自己的数学素养,为后续学习打下坚实的基础。总之,本套 PPT 课件通过系统的内容设计和丰富的教学方法,帮助学生全面理解二元一次方程组与一次函数之间的关系,掌握运用数形结合思想解决数学问题的方法。通过图像与方程的结合,学生能够更好地理解数学知识之间的内在联系,提升数学思维能力。这种以数形结合为核心的教学方式,能够有效激发学生的学习兴趣,培养他们的严谨态度和良好习惯,为学生今后的数学学习和思维发展提供有力支持。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这份共十六张的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第2课时“一次函数与正比例函数”量身打造,以“从特殊到一般、从感知到符号”为脉络,帮助学生在短短一节课内完成“认识正比例—提炼一次—写出解析式”的三级跳。课堂流程简洁而递进:温故复习—情境导入—新知探究—典例巩固—课堂小结。 开篇“温故复习”用30秒快闪:函数定义、三种表示法(解析式、表格、图像)依次闪过,学生抢答关键词“唯一对应”,教师随即板书,为后续“一次函数也是函数”奠定逻辑起点。 “情境导入”贴近学生日常:手机导航显示“匀速行驶,每公里油耗0.08升”,屏幕动态呈现里程表与油量表同步下降,学生记录“行驶里程x”与“剩余油量y”对应数据,发现每增加1公里,油量减少0.08升,变化量恒定,教师顺势点拨“当x=0时,y=油箱容量”,引出y=kx+b(k≠0)的一般形式,并强调“b可不为0”即一次函数,“b=0”则退化为正比例函数,特殊与一般的关系一目了然。 “新知探究”借助课本例题“弹簧伸长量与所挂砝码质量”展开:学生分组测量数据,计算“每多50克,伸长0.5厘米”的固定变化率,填写表格并描点连线,GeoGebra同步生成直线,直观感受“斜率k即变化率、截距b即原长”,随后归纳求解析式三步法:找变化率→定k→代入任一点求b。 “典例巩固”采用“一题多变”:同一背景“共享单车押金与骑行费用”分别给出表格、图像、文字三种信息,学生抢列解析式并预测骑行10公里的费用,平板实时呈现正确率,教师针对最低得分点即时二次讲解;随后推送两道中考真题切片,要求学生判断函数类型并写出关系式,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:正比例函数→一次函数→斜率k→截距b四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用水量与水费关系,记录数据并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“正比例函数是一次函数的特殊情况”,更在“列表—写式—画图—预测”的实战中,为后续学习函数图像性质、实际应用及模型思想奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
PPT全称是PowerPoint,麦克素材网为你提供三次伟大飞跃PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。