PPT课件从四个部分来展开介绍关于人教版九年级上册数学课程《直线和圆的位置关系》的相关内容。PPT课件的第一部分阐述了本节课的两点素养目标。第二部分通过提问的方式引导学生探究了如何用公共点个数来判断直线和圆的位置关系。第三部分归纳了利用数量关系判断直线和圆的位置关系的方法。第四部分展示了相关练习题目以及本节课的知识总结,并布置了课后作业。
PPT课件从五个部分展开介绍关于人教版九年级上册数学课程《正多边形与圆》第二课时的教学内容。PPT课件的第一部分阐述了本节课的两点学习目标。第二部分展示了生活中的正多边形以及常见的正多边形,并在此基础上介绍了正多边形的尺规作图方法。第三部分展示了历届中考试题中有关正多边形的题目以及答案。第四部分展示了本节课的课堂检测练习题以及本节课的重点内容。第五部分布置了课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对《做游戏》进行展示。第二部分内容是素养目标,学生首先知道如何利用“列表法”求随机事件的概率,其次会用列表法求出事件的概率,最后会用直接列举法和列表法列举所有可能出现的结果。第三部分内容是探究新知,这一部分主要包括用直接列举法求概率、用列表法求概率、利用列表法解答掷骰子问题和计算摸球游戏的概率。第四部分内容是课堂检测和课后小结。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生们首先能够进一步学习分类思想方法,其次能够掌握树状图法的定义,最后可以进一步理解等可能事件概率的意义。第二部分内容是探究新知,这一部分主要包括利用画树状图法求概率、树状图的画法、画树状图求概率的基本步骤。第三部分内容是链接中考和课堂检测,这一部分一方面展示了两道中考题,另一方面是对基础巩固题和能力提升题进行展示。第四部分内容是课后小结和课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对解一元二次方程的方法和因式分解的概念进行解释。第二部分内容是素养目标,学生首先能够选择合适的方法来解一元二次方程,其次是会应用因式分解法解一元二次方程,最后能够理解一元二次方程因式分解法的概念。第三部分内容是探究新知,这一部分主要包括因式分解法的概念和条件、分解因式法解一元二次方程的步骤。第四部分内容是链接中考、课堂检测和作业。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生首先会熟练应用公式法解一元二次方程,其次能够识别一元二次方程根的情况,最后可以理解一元二次方程求根公式的推导过程。第二部分内容是探究新知,这一部分主要包括公式法的概念、用配方法解一般形式的一元二次方程、用公式法解一元二次方程的一般步骤。第三部分内容是课堂检测,其中包括基础巩固题和能力提升题。第四部分内容是课堂小结和课后作业。
PPT课件从五个部分来展开介绍关于人教版九年级上册数学课程《点和圆的位置关系》的相关内容。PPT课件的第一部分通过介绍射击运动来导入新课,并指明了本节课的四点学习目标。第二部分通过图文结合的形式介绍了点和圆的三种位置关系以及其判定方法。第三部分阐述了关于“过不共线三点作圆”的相关知识。第四部分介绍了三角形的外接圆以及其外心的含义。第五部分展示了相关练习题目,并归纳了本节课的重点知识。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生们首先能够进一步体会数形结合的思想,其次会在平面直角坐标系内作关于原点对称的图形,最后能够掌握纵横坐标的关系。第二部分内容是探究新知,这一部分主要包括关于原点对称的点的坐标的特征、利用所学知识确定字母的值、作关于原点对称的图形的步骤。第三部分内容是课堂检测,这一部分一方面展示了四道基础巩固题,另一方面是对能力提升题和拓广探索题进行展示。第四部分内容是课堂小结和课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该部分引导学生求出赵州桥主桥拱的半径。第二部分内容是素养目标,学生首先能够灵活运用垂径定理解决有关圆的问题,其次能够理解垂直于弦的直径的性质和推论,最后可以了解圆是轴对称图形。第三部分内容是探究新知,这一部分主要包括圆的轴对称性、垂径定理及其推论、垂径定理及其推论的计算、利用垂径定理及推论证明相等。第四部分内容是课堂检测和课堂小结。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对三道概率问题进行展示并鼓励学生用列举法进行概率计算。第二部分内容是素养目标,学生们首先能够通过概率计算进一步比较概率与频率之间的关系,其次能够结合具体情境掌握如何用频率估计概率,最后可以理解,试验次数较大时试验频率趋于稳定这一规律。第三部分内容是探究新知,这一部分主要包括用频率估计概率、用频率估计概率的合格率、概率与频率的关系。第四部分内容是链接中考和课堂检测。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对《魔术时间》的数学游戏进行展示。第二部分内容是素养目标,学生首先会运用中心对称图形的性质解决实际问题,其次可以知道中心对称和中心对称图形的区别和联系,最后会识别中心对称图形。第三部分内容是探究新知,这一部分主要包括中心对称图形的概念、识别和应用。第四部分内容是链接中考和课堂检测。
本套PPT课件专为人教版数学九年级下册“反比例函数的图像与性质”第1课时精心设计,共27张幻灯片。本节课旨在助力学生熟练掌握反比例函数图像的细节特征,如图像的双曲线形状、各象限内图像的走势等,并能灵活运用反比例函数的图像与性质解决含参问题,准确确定参数的取值范围以满足特定的函数条件,从而提升学生的数学思维与解题能力。课件内容从14个部分展开。第一阶段包含复习巩固、探究新知、新知讲解等六个环节。开篇通过复习上节课的基础知识,为学生搭建起通往新知识的桥梁,使学生能够顺畅地衔接新旧知识。随后,引导学生观察反比例函数图像,深入探究图像在不同象限的分布情况,以及在每个象限内x与y的变化规律,如当k0时,图像位于一、三象限,且在每个象限内y随x的增大而减小等。这一阶段通过层层递进的探究与讲解,帮助学生逐步构建起对反比例函数图像与性质的清晰认知。第二阶段涵盖典例分析、针对训练、能力提升等五个部分。在这一阶段,通过精选的例题讲解,将抽象的理论知识与具体的题目相结合,帮助学生深入理解知识点在实际问题中的应用。针对训练环节则让学生在实践中巩固所学,及时发现并纠正解题过程中的问题。能力提升部分则进一步拓展学生的思维,引导学生挑战更高难度的问题,提升综合解题能力。此外,该套PPT还包括直击中考、归纳小结、布置作业三个重要环节。直击中考环节选取与中考相关的反比例函数题目进行分析讲解,让学生提前感受中考题型,明确考试方向。归纳小结部分通过梳理本节课的重点知识,帮助学生巩固记忆,构建完整的知识体系。布置作业环节则精选适量的习题,既包括对基础知识的巩固,也涵盖一些拓展性题目,旨在让学生在课后能够及时复习,深化理解,同时检验学生对本节课知识的掌握程度,为教师后续的教学调整提供参考依据。通过这一系列精心设计的环节,本套PPT课件全方位助力学生掌握反比例函数的图像与性质,为中考数学备考打下坚实基础。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这份共七十九页的复习课件,为北师大版八年级上册第四章《一次函数》量身定制,以“框架—缺口—补缺—实战”四部曲,帮学生在有限时间内把零散知识织成网、把易错点变得分点。课堂沿“六步闭环”推进:目标导航—图谱建网—考点速通—题型破拆—针对训练—总结提升。开篇“单元复习目标”用双色雷达图直击要害:重点侧写明“能辨一次函数、会画图像、会用性质解实际问题”;难点侧聚焦“含参解析式求范围、图像平移与几何综合”,让学生抬头便知复习靶心。“单元知识图谱”以可缩放思维导图呈现三大主干——“概念”下设定义、自变量取值、与正比例区别;“图像与性质”拆成斜率k、截距b、平移规律、两直线位置关系;“应用”涵盖计费、行程、方案比较、交点决策。节点留空,学生用电子笔现场填充典型错题或提醒,教师一键保存,生成“班级复习云图”,实现知识个性化再建构。“考点串讲”采用表格+动画双通道:左侧列考点,右侧配“易错闪电标”,如“k相同必平行,b不同才相错”“平移口诀:上+b下-b,左+x右-x”等,每点配3秒Gif演示,30秒过完一个考点,既高效又吸睛。“题型剖析”精选月考失分高频五类:判断一次函数、求参数范围、图像平移、交点实际问题、方案择优。每类配“母题”+“子题”,用“错因→正解→变式”三段式拆解,学生用点赞贴投票“最惨痛病例”,在笑声中警醒。“针对训练”分层推送:A层在线判断快速抢答,系统即时红绿反馈;B层给出“阶梯水费”情境,要求写分段解析式并画图像;C层引入中考真题,要求用两种方法求“两车相遇又相距”的时刻,平板实时生成“掌握度曲线”,教师依据数据现场开“微门诊”。结课“课堂总结”用30秒“电梯演讲”——每人说一个今天补齐的知识漏洞,弹幕滚成词云;作业分两层:A层完成教材单元复习题,B层拍摄生活视频,找出“一次函数”场景,测数据、写模型、做预测,把复习成果带回家。整套课件通过“目标定向—图谱织网—错因曝光—精准训练”的闭环,不仅让学生把“辨式、画图、用性、建模”做得又快又准,更在“自查—互学—展示”的反复体验中,提升合作意识与策略思维,为后续二次函数、综合实践奠定坚实的方法、能力与信心三重基础。
这份共二十一张幻灯片的PPT课件,专为北师大版八年级上册第四章《4.1 函数》量身定制,以“从生活现象中捕捉变化规律”为切入口,引导学生完成从“感性认识变量”到“抽象定义函数”的第一次跨越。课堂流程简洁而递进:情境导入—探究新知—典例巩固—课堂小结。 开篇“情境导入”用日常短视频串烧:自动扶梯的梯级高度与时间、加油机金额与油量、气温与海拔,三组画面同步滚动,学生边看边记录“谁跟着谁变”,教师追问“一个量确定后,另一个量是否唯一确定?”生活事例瞬间聚焦到“对应”这一核心。 “探究新知”分三步走:先给出函数描述性定义,强调“唯一对应”关键词;再借助箭头图、解析式、表格三种方式呈现同一关系,让学生直观感受函数的多元表征;最后通过“分式型、根式型、零次幂型”三类表达式,归纳求自变量取值范围的“三把钥匙”——分母不为零、偶根非负、零次底非零,每把钥匙配一道即时口答,错误答案瞬间红显,强化记忆。 “典例巩固”采用“一题多变”:同一背景“汽车匀速行驶”分别用表格、解析式、图像给出,学生抢答自变量范围并计算函数值,平板自动生成正确率柱形图,教师针对最低得分点二次讲解;随后推送两道中考真题切片,要求学生判断是否为函数关系并说明理由,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:定义、表示、求范围、求函数值四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层拍摄生活短视频,指出其中的自变量与函数关系并配文说明,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“视觉冲击—多元表征—即时反馈”的闭环设计,不仅让学生真正理解“函数就是对应”,更在“找范围、求值、判断关系”的实战中,为后续学习一次函数、二次函数奠定坚实的概念与技能双重根基。
这份演示文稿主要从四个部分对图形的旋转第一课时进行详细展开。第一部分是导入新知,主要以新疆的风车田、荷兰的大风车、游乐场的摩天轮以及漩涡相关的几幅图片,引导学生观察他们的共同点。第二部分是探究新知,主要介绍了旋转的概念旋转的判定和旋转的性质。第三部分是课堂检测部分,主要包括基础巩固题和能力提升体。第四部分是课堂小结和课后作业的展示。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版数学九年级上册学习课件的相关内容。PPT模板内容第一部分主要向我们详细的讲解了一元二次方程的求根公式。第二部分主要是有关于本节课的学习目标。第三部分主要向同学们详细的讲解了根与系数的关系。第四部分是有关于探究新知的具体内容。第五部分主要向同学们详细的讲述了有关于一元二次方程的根与系数的关系的相关应用。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版九年级数学上册学习课件的相关内容。PPT模板内容第一部分是有关于导入新知的相关内容。第二部分是有关于本节课的学习目标。第三部分是有关于几何图形的面积问题。第四部分主要是有关于利用一元二次方程解答一般面积问题的解题方法。第五部分主要向同学们详细的讲解了有关于靠墙问题的解答。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版九年级数学上册学习课件的相关内容。PPT模板内容第一部分是有关于本节课导入新知和素养目标的具体内容。第二部分主要向同学们详细的讲述了列一元二次方程解答增长率问题的具体内容。第三部分是有关于基础巩固题的具体内容。第四部分是有关于课堂检测的相关内容。第五部分主要向同学们详细的讲解了有关于课堂总结和课后作业的内容。
PPT全称是PowerPoint,麦克素材网为你提供人教版数学九年级上册二次函数课件PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。