这是一套专为人教版数学八年级上册《18.3 分式的加法与减法(第2课时)》设计的PPT课件,包含25张幻灯片。本课件旨在帮助学生深入理解异分母分式加减法的核心原理,熟练掌握“先通分,再加减”的运算步骤,并通过学习进一步深化类比迁移与转化划归的数学思想。课件内容分为八个部分:复习引入:通过复习同分母分式的加减法,为学习异分母分式的加减法做好铺垫。合作探究:引导学生通过小组讨论和合作学习,探索异分母分式加减法的通分方法和运算步骤。典例分析:通过具体例题,详细讲解异分母分式加减法的运算过程,帮助学生加强对分式混合运算的理解和应用。巩固练习:提供一系列练习题,让学生在实践中巩固所学知识,提高运算能力。归纳总结:以表格形式总结本节课的重点知识,帮助学生系统回顾和复习。感受中考:通过练习中考真题,让学生熟悉中考题型,增强应试能力。小结梳理:引导学生对本节课的学习内容进行梳理,总结收获和体会。布置作业:布置课后作业,巩固课堂所学,拓展学习内容。通过这套PPT课件,学生不仅能够掌握异分母分式加减法的运算技巧,还能在类比迁移和转化划归的数学思想指导下,提升数学思维能力和解决问题的能力。
这是一套专为人教版数学八年级上册第18章“整数指数幂”(第1课时)精心设计的PPT课件,包含28张幻灯片。本节课旨在帮助学生深入理解正整数指数幂的性质,熟练掌握正整数指数幂的运算方法,并在自主探究过程中培养学生的合作能力和探究精神。该PPT课件从八个方面展开教学内容。第一部分是情境引入,通过引导学生回顾复习正整数指数幂的意义及相关运算性质,自然地引出本节课的学习主题,为后续学习奠定基础。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨相关问题,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过精选的具体例题,帮助学生更好地理解和掌握知识点,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生巩固所学知识,加深对正整数指数幂的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的作业,让学生在课后进一步巩固所学知识,提高学习效果。
这是一套专为人教版数学八年级上册第18章“整数指数幂”(第2课时)设计的PPT课件,共包含26张幻灯片。本节课的核心目标是帮助学生深入理解负整数指数幂的性质,并熟练掌握其运算方法,包括乘法、除法和乘方。通过本节课的学习,学生将逐步培养严谨的思维习惯,为后续的数学学习打下坚实的基础。该PPT课件从八个方面展开教学内容。第一部分是复习引入,通过回顾上节课所学的正整数指数幂的知识,自然地过渡到本节课的学习主题,帮助学生建立起知识的连贯性。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨负整数指数幂的性质和运算规律,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过精选的具体例题,帮助学生更好地理解和掌握负整数指数幂的运算方法,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生在实践中巩固所学知识,加深对负整数指数幂的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的课后作业,帮助学生及时回顾复习本节课的知识点,加强对知识点的理解和记忆,进一步巩固学习成果。
这是一套专为人教版数学八年级上册第18章“分式方程”(第1课时)精心设计的PPT课件,共包含31张幻灯片。本节课的核心目标是帮助学生深入理解分式方程的概念,掌握解分式方程的基本步骤,并了解分式方程可能产生增根的原因。通过本节课的学习,学生将被引导自主探究分式方程的解法,同时培养他们的合作能力和探究精神。该PPT课件从八个方面展开教学内容。第一部分是情境引入,通过创设具体的情境,引导学生回顾已学知识,自然地引出分式方程的概念,激发学生的学习兴趣。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨分式方程的解法,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过分析具体例题,帮助学生更好地理解和掌握分式方程的解法,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生在实践中巩固所学知识,加深对分式方程的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的课后作业,帮助学生及时回顾复习本节课的知识点,加强对知识点的理解和记忆,进一步巩固学习成果。
这是一套专为人教版数学八年级上册第18章“分式方程”(第2课时)设计的PPT课件,共包含22张幻灯片。本节课的核心目标是帮助学生巩固分式方程的解法,并掌握分式方程在实际问题中的应用。学生将学会根据实际问题列出分式方程并求解,同时通过本节课的学习,引导学生自主探究分式方程在实际中的应用,培养他们解决实际问题的能力。该PPT课件从八个方面展开教学内容。第一部分是复习引入,通过图文结合的方式,帮助学生回顾解分式方程的基本步骤,为本节课的学习做好铺垫。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨分式方程在实际问题中的应用,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过分析具体例题,帮助学生更好地理解和掌握分式方程在实际问题中的应用方法,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生在实践中巩固所学知识,加深对分式方程在实际问题中应用的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的课后作业,帮助学生及时回顾复习本节课的知识点,加强对知识点的理解和记忆,进一步巩固学习成果。通过这套PPT课件,学生不仅能够巩固分式方程的解法,还能学会如何将分式方程应用于实际问题中,培养他们的数学思维和解决实际问题的能力。
PPT模板从四个部分来展开介绍关于人教版八年级上册语文课文《一着惊海天——目击我国航母舰载战斗机首架次成功着舰》的相关内容。PPT模板的第一部分展示了本文的生字读音以及生词释义。第二部分阐述了通讯的定义以及通讯的三大特点,并介绍了通讯的分类、第三部分概述了本文的主要内容,并分析了其文章内涵。第四部分展示了本节课的板书设计。
PPT模板从四个部分来展开介绍关于人教版八年级上册名著导读《红星照耀中国》的相关内容。PPT模板的第一部分介绍了《红星照耀中国》的出版历程、作者信息以及写作背景,并阐述了本书的体裁特点。第二部分介绍了相关阅读方法,并引导学生利用阅读方法对本书进行深入探究。第三部分通过抢答的方式引导学生回顾本书的重要内容,并梳理了其中的故事情节。第四部分组织学生分享本次课程的阅读成果。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版数学八年级上册学习课件的相关内容。PPT模板内容第一部分主要向我们详细的介绍了导入新知的具体内容。第二部分主要是有关于本节课的的学习目标。第三部分主要通过题目来教会同学们学会画线段垂直平分线。第四部分主要是有关于探究新知的教学环节。第五部分是有关于巩固练习的教学环节。最后一部分是有关于课堂小结的内容。
这份共二十一张幻灯片的PPT课件,专为北师大版八年级上册第四章《4.1 函数》量身定制,以“从生活现象中捕捉变化规律”为切入口,引导学生完成从“感性认识变量”到“抽象定义函数”的第一次跨越。课堂流程简洁而递进:情境导入—探究新知—典例巩固—课堂小结。 开篇“情境导入”用日常短视频串烧:自动扶梯的梯级高度与时间、加油机金额与油量、气温与海拔,三组画面同步滚动,学生边看边记录“谁跟着谁变”,教师追问“一个量确定后,另一个量是否唯一确定?”生活事例瞬间聚焦到“对应”这一核心。 “探究新知”分三步走:先给出函数描述性定义,强调“唯一对应”关键词;再借助箭头图、解析式、表格三种方式呈现同一关系,让学生直观感受函数的多元表征;最后通过“分式型、根式型、零次幂型”三类表达式,归纳求自变量取值范围的“三把钥匙”——分母不为零、偶根非负、零次底非零,每把钥匙配一道即时口答,错误答案瞬间红显,强化记忆。 “典例巩固”采用“一题多变”:同一背景“汽车匀速行驶”分别用表格、解析式、图像给出,学生抢答自变量范围并计算函数值,平板自动生成正确率柱形图,教师针对最低得分点二次讲解;随后推送两道中考真题切片,要求学生判断是否为函数关系并说明理由,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:定义、表示、求范围、求函数值四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层拍摄生活短视频,指出其中的自变量与函数关系并配文说明,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“视觉冲击—多元表征—即时反馈”的闭环设计,不仅让学生真正理解“函数就是对应”,更在“找范围、求值、判断关系”的实战中,为后续学习一次函数、二次函数奠定坚实的概念与技能双重根基。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这份共十六张的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第2课时“一次函数与正比例函数”量身打造,以“从特殊到一般、从感知到符号”为脉络,帮助学生在短短一节课内完成“认识正比例—提炼一次—写出解析式”的三级跳。课堂流程简洁而递进:温故复习—情境导入—新知探究—典例巩固—课堂小结。 开篇“温故复习”用30秒快闪:函数定义、三种表示法(解析式、表格、图像)依次闪过,学生抢答关键词“唯一对应”,教师随即板书,为后续“一次函数也是函数”奠定逻辑起点。 “情境导入”贴近学生日常:手机导航显示“匀速行驶,每公里油耗0.08升”,屏幕动态呈现里程表与油量表同步下降,学生记录“行驶里程x”与“剩余油量y”对应数据,发现每增加1公里,油量减少0.08升,变化量恒定,教师顺势点拨“当x=0时,y=油箱容量”,引出y=kx+b(k≠0)的一般形式,并强调“b可不为0”即一次函数,“b=0”则退化为正比例函数,特殊与一般的关系一目了然。 “新知探究”借助课本例题“弹簧伸长量与所挂砝码质量”展开:学生分组测量数据,计算“每多50克,伸长0.5厘米”的固定变化率,填写表格并描点连线,GeoGebra同步生成直线,直观感受“斜率k即变化率、截距b即原长”,随后归纳求解析式三步法:找变化率→定k→代入任一点求b。 “典例巩固”采用“一题多变”:同一背景“共享单车押金与骑行费用”分别给出表格、图像、文字三种信息,学生抢列解析式并预测骑行10公里的费用,平板实时呈现正确率,教师针对最低得分点即时二次讲解;随后推送两道中考真题切片,要求学生判断函数类型并写出关系式,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:正比例函数→一次函数→斜率k→截距b四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用水量与水费关系,记录数据并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“正比例函数是一次函数的特殊情况”,更在“列表—写式—画图—预测”的实战中,为后续学习函数图像性质、实际应用及模型思想奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这份共七十九页的复习课件,为北师大版八年级上册第四章《一次函数》量身定制,以“框架—缺口—补缺—实战”四部曲,帮学生在有限时间内把零散知识织成网、把易错点变得分点。课堂沿“六步闭环”推进:目标导航—图谱建网—考点速通—题型破拆—针对训练—总结提升。开篇“单元复习目标”用双色雷达图直击要害:重点侧写明“能辨一次函数、会画图像、会用性质解实际问题”;难点侧聚焦“含参解析式求范围、图像平移与几何综合”,让学生抬头便知复习靶心。“单元知识图谱”以可缩放思维导图呈现三大主干——“概念”下设定义、自变量取值、与正比例区别;“图像与性质”拆成斜率k、截距b、平移规律、两直线位置关系;“应用”涵盖计费、行程、方案比较、交点决策。节点留空,学生用电子笔现场填充典型错题或提醒,教师一键保存,生成“班级复习云图”,实现知识个性化再建构。“考点串讲”采用表格+动画双通道:左侧列考点,右侧配“易错闪电标”,如“k相同必平行,b不同才相错”“平移口诀:上+b下-b,左+x右-x”等,每点配3秒Gif演示,30秒过完一个考点,既高效又吸睛。“题型剖析”精选月考失分高频五类:判断一次函数、求参数范围、图像平移、交点实际问题、方案择优。每类配“母题”+“子题”,用“错因→正解→变式”三段式拆解,学生用点赞贴投票“最惨痛病例”,在笑声中警醒。“针对训练”分层推送:A层在线判断快速抢答,系统即时红绿反馈;B层给出“阶梯水费”情境,要求写分段解析式并画图像;C层引入中考真题,要求用两种方法求“两车相遇又相距”的时刻,平板实时生成“掌握度曲线”,教师依据数据现场开“微门诊”。结课“课堂总结”用30秒“电梯演讲”——每人说一个今天补齐的知识漏洞,弹幕滚成词云;作业分两层:A层完成教材单元复习题,B层拍摄生活视频,找出“一次函数”场景,测数据、写模型、做预测,把复习成果带回家。整套课件通过“目标定向—图谱织网—错因曝光—精准训练”的闭环,不仅让学生把“辨式、画图、用性、建模”做得又快又准,更在“自查—互学—展示”的反复体验中,提升合作意识与策略思维,为后续二次函数、综合实践奠定坚实的方法、能力与信心三重基础。
这份共十六张的PPT课件,紧扣北师大版八年级上册第四章《一次函数的应用》第一课时——“确定一次函数的表达式”,以“会看图、会设式、会求参”为核心目标,引导学生在图像与情境中还原解析式,深刻体验数形结合的魅力。课堂仍循五步展开:温故—情境—新知—典例—小结。“温故复习”用快闪方式唤醒记忆:正比例函数y=kx的图像必过原点,一次函数y=kx+b的斜率k定方向、截距b定位置,学生边口述边用手势比斜率,教师顺势板书“两点定一线”,为后续求参埋下伏笔。“情境导入”给出两条已画直线:y=2x+1与y=-x+3,让学生抢答“谁先画到y轴1?谁与x轴交于-3?”在温习图像特征的同时,教师追问:“如果反过来,已知直线经过(0,4)和(2,0),你能写出它的解析式吗?”问题一转,引出本课核心任务——由图或情境确定表达式。“新知探究”分两步走:先特殊后一般。①确定正比例函数:给出图像过点(3,6),学生口算k=2,写出y=2x,归纳“一个非原点即可定k”;②确定一次函数:给出图像与y轴交于-1,且过点(2,3),学生先写y=kx-1,再代入求k=2,归纳“两点或一点加截距可定k、b”。教师随即用GeoGebra动态演示:拖动两点,解析式实时变化,学生眼见“点动式动”,深刻感受坐标与参数的对应关系。“典例巩固”采用“一题三问”:给出一次函数图像与坐标轴两交点,先写解析式,再求x=-1时的函数值,最后判断点(m,m+2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,给出实际情境“租车计费”,要求先设y=kx+b,再利用两组数据求参,实现“情境→图像→解析式”的完整闭环。结课用“思维导图快闪”:两点坐标→列方程组→解k、b→写解析式四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“由图求式”练习,B层拍摄家中电表读数,记录两次时间与示数,写出一次函数模型并预测下次读数,把课堂所学搬回家。整套课件通过“动态演示—即时求参—情境回归”的闭环设计,不仅让学生真正掌握“两点定一线”的求法,更在“看图像→写解析式→回代检验”的反复实践中,深刻体会数形结合思想,为后续学习一次函数与方程、不等式综合应用奠定坚实的模型与思维双重基础。
该演示文稿以幻灯片的形式分四个部分呈现了人无信不立的内容,方便教师在使用PowerPoint时更好的对此次写作进行情境导入。PPT模板的第一部分是情境导入,呈现了孙水林的故事。第二部分是主题演讲比赛,呈现了主题演讲比赛的具体内容,解释了比赛的大致流程。第三部分是一段话,写出我心中的信,呈现了一个练习题。第四部分是布置课外活动,课外活动的主题是人物来访。
本套PPT分为新知导入、实验探究、新知讲解、拓展练习四个部分;第一部分先结合图片和例子向学生提问,激发学生的兴趣;第二部分阐述了几个与声现象有关的原理现象,并结合实验令学生印象更加深刻;第三部分结合动画提出了更深层次的声传播能量的理论;第四部分结合例题让学生及时巩固所学内容,温故而知新;层层递进,逻辑清晰。
PPT模板从学习目标、新课导入、新课探究、拓展延伸四个部分展开《声的利用》的教学内容。PPT模板的第一部分介绍了《声的利用》这节课的四个学习目标,指明了这节课的学习重点。第二部分采用自学指导使学生初步掌握有关声传递信息的基本知识点。第三部分先借助练习题巩固回声定位的计算公式,再利用自学指导使学生掌握有关声传递能量的知识并进行总结归纳。第四部分采用当堂练习进行课堂的拓展延伸。
该PPT以人教版八年级英语上册How often do you exercise课件PPT模板为主题,内容上,该PPT模板从四个部分阐述主题,首先第一部分是复习巩固,复习单词,短语,和句型。然后第二部分是新知导入,学习how often的句型问答,以及新单词和词组用法。紧接着第三部分是合作探究,做练习巩固知识。最后第四部分是拓展延伸,区分must和have to的用法。
该PPT以细菌课件PPT模板部编版八年级生物上册为主题,内容上,该PPT模板首先列出了三个学习目标,明确一节课的教学目标才能更好的实施教学方法和步骤。然后讲述了关于细菌的知识。接着从四个方面提出疑问,然后逐步解决疑问:1,细菌如何发现的?2,细菌从哪里来?3,细菌的结构是怎样的?4,细菌是如何生殖的?最后讲述了巴氏消毒法。
PPT模板内容主要通过PowerPoint软件分两个部分来向我们展开介绍有关编版版八年级上册语文《学写传记》课件的相关内容,共计20张幻灯片。PPT模板内容第一部分主要是有关掌握传记中艺术的表现手法的内容,包括注重细节描写、凸显人物品质和情感等等内容。第二部分主要向我们详细的展示了有关写作练习的内容,题型包括采访、鱼骨图、材料题等等。
PPT全称是PowerPoint,麦克素材网为你提供八年级上册PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。