本套 PPT 课件是为北师大数学八年级上册 2.1 认识实数(第 1 课时)精心设计的教学资源,共包含 21 张幻灯片。本节课的核心目标是帮助学生理解无理数的概念,学会识别有理数与无理数,掌握实数的分类方法,并明确实数与有理数、无理数之间的从属关系。通过本节课的学习,学生将体会数学知识的连续性与完整性,培养严谨的数学思维习惯。课件的开篇通过回顾有理数的概念及其表现形式,为学生搭建了知识的衔接点。这种复习导入的方式不仅巩固了学生对已有知识的理解,还自然引出了本节课的学习主题——实数。通过对比有理数,学生能够更好地理解无理数的特点,为后续学习奠定基础。在新知识的讲解部分,PPT 通过具体问题引导学生逐步认识非有理数的概念。通过生动的实例和详细的讲解,学生能够清晰地理解无限不循环小数的特征及其与有理数的区别。这一环节通过逐步解析,帮助学生掌握无限不循环小数的识别方法,从而更好地理解无理数的本质。典例分析环节是本套 PPT 的重要组成部分。通过精心设计的例题,针对具体问题进行详细分析,引导学生逐步思考并解决问题。这些例题不仅涵盖了无理数的识别和实数的分类,还涉及了一些实际问题中的数学应用。通过这些例题的讲解,学生能够学会如何运用所学知识解决实际问题,提高解决实际问题的能力。此外,PPT 还设置了巩固练习和真题感知两个环节。巩固练习环节通过多样化的题目设计,帮助学生进一步加强对知识点的理解和应用。这些练习题涵盖了从基础到拓展的不同层次,既满足了学生巩固知识的需求,又为学有余力的学生提供了挑战机会。真题感知环节则让学生提前接触中考真题,感受真实的考试情境,了解命题方向和难度,从而提前做好备考准备,增强应试能力。整套 PPT 课件注重知识的系统性和实用性,通过合理的教学设计和丰富的教学资源,为学生提供了一个全面、高效的学习平台。它不仅帮助学生扎实掌握实数的概念、分类及其与有理数、无理数的关系,还通过实际问题的应用展示了数学的实用性和价值,激发了学生的学习兴趣。这种教学设计不仅有助于学生在数学学习中取得更好的成绩,更培养了他们运用数学知识解决实际问题的能力,为学生的未来发展奠定了坚实的基础。
本套 PPT 课件围绕北师大数学八年级上册 2.1 认识实数(第 2 课时)展开,共包含 19 张幻灯片,旨在助力学生深入理解实数的多种性质,掌握实数的运算规则,提升数学综合素养。课程伊始,通过回顾上节课知识,巧妙引出实数概念,为后续学习奠定基础。随后借助具体问题,引导学生探寻实数的意义与表示方式,使抽象知识具象化,便于学生理解。在典例分析环节,针对不同问题深入剖析,以实际案例为依托,培养学生解决实际问题的能力,让学生学会运用所学知识应对各类数学问题,增强知识运用的灵活性。此外,PPT 设计了巩固练习与真题感知两大环节。巩固练习通过多样化的题目,帮助学生进一步深化对知识点的理解,强化记忆,使学生能够熟练运用所学知识进行运算与推理。真题感知则让学生提前接触中考真题,感受真实考试情境,了解命题方向与难度,提前做好备考准备,提升应试能力。整套 PPT 课件注重引导学生经历“猜想 — 验证 — 归纳”过程,让学生在主动探索中体会“类比迁移”数学思想,从而培养运算能力与推理能力,帮助学生构建起对实数体系的整体性认识,为后续数学学习奠定坚实基础。
本套 PPT 课件是为北师大数学八年级上册 2.3 二次根式(第 1 课时)精心设计的教学资源,共包含 22 张幻灯片。本节课的核心目标是帮助学生深入理解二次根式的定义,明确二次根式有意义的条件,掌握二次根式的基本性质,并能够运用这些性质进行简单的二次根式化简。通过本节课的学习,学生将体会数学知识之间的内在联系,感受数学的严谨性和实用性,从而提高解决实际问题的能力。课件的开篇通过回顾平方根与算术平方根的概念以及算术平方根有意义的条件,为学生搭建了知识的衔接点。这种复习导入的方式不仅巩固了学生对已有知识的理解,还自然引出了本节课的学习主题——二次根式。通过对比和联系,学生能够更好地理解二次根式与之前所学知识的关联,为新知识的学习奠定坚实基础。在新知识的讲解部分,PPT 通过具体问题引导学生逐步探索二次根式的概念。通过生动的实例和详细的讲解,学生能够清晰地理解二次根式的定义以及其有意义的条件。接着,课件进一步引导学生掌握二次根式的乘除运算方法。这一部分通过逐步解析运算过程,帮助学生理解二次根式运算的规则和技巧,使学生能够熟练进行二次根式的乘除运算。典例分析环节是本套 PPT 的重要组成部分。通过精心设计的例题,针对具体问题进行详细分析,引导学生逐步思考并解决问题。这些例题不仅涵盖了二次根式的基本性质和运算方法,还涉及了一些实际问题中的数学应用。通过这些例题的讲解,学生能够学会如何将二次根式的知识应用于实际问题,提高解决实际问题的能力。此外,PPT 还设置了巩固练习和真题感知两个环节。巩固练习环节通过多样化的题目设计,帮助学生进一步加强对知识点的理解和应用。这些练习题涵盖了从基础到拓展的不同层次,既满足了学生巩固知识的需求,又为学有余力的学生提供了挑战机会。真题感知环节则让学生提前接触中考真题,感受真实的考试情境,了解命题方向和难度,从而提前做好备考准备,增强应试能力。整套 PPT 课件注重知识的系统性和实用性,通过合理的教学设计和丰富的教学资源,为学生提供了一个全面、高效的学习平台。它不仅帮助学生扎实掌握二次根式的定义、性质和运算方法,还通过实际问题的应用展示了数学的实用性和价值,激发了学生的学习兴趣。这种教学设计不仅有助于学生在数学学习中取得更好的成绩,更培养了他们运用数学知识解决实际问题的能力,为学生的未来发展奠定了坚实的基础。
本套 PPT 课件是为北师大数学八年级上册 5.5 三元一次方程组精心设计的教学资源,共包含 17 张幻灯片。本节课的核心目标是帮助学生理解三元一次方程组的概念,掌握其一般形式,学会用消元法解三元一次方程组,并能根据实际问题列出三元一次方程组并求解。通过本节课的学习,学生将培养逻辑思维能力和运算能力,同时提高合作交流能力和问题解决能力。课件的开篇通过回顾二元一次方程组的定义及求解方法,为学生搭建了知识的衔接点。这种复习导入的方式不仅巩固了学生对已有知识的理解,还自然引出了本节课的学习主题——三元一次方程组。通过对比二元一次方程组,学生能够更好地理解三元一次方程组的特点和求解思路,为新知识的学习奠定坚实基础。在新知识的讲解部分,PPT 通过具体问题引导学生逐步认识三元一次方程的概念以及三元一次方程组的结构。通过生动的实例和详细的讲解,学生能够清晰地理解三元一次方程组的一般形式及其特点。接着,课件重点讲解了用消元法解三元一次方程组的方法。通过逐步解析,学生能够掌握如何通过消元将三元一次方程组转化为二元一次方程组,进而求解。这一过程不仅锻炼了学生的逻辑思维能力,还提升了他们的运算能力。典例分析环节是本套 PPT 的重要组成部分。通过精心设计的例题,针对具体问题进行详细分析,引导学生逐步思考并解决问题。这些例题不仅涵盖了三元一次方程组的基本求解方法,还涉及了一些实际问题中的数学模型。通过这些例题的讲解,学生能够学会如何根据实际问题列出三元一次方程组,并运用所学方法求解,从而提高解决实际问题的能力。此外,PPT 还设置了巩固练习和真题感知两个环节。巩固练习环节通过多样化的题目设计,帮助学生进一步加强对知识点的理解和应用。这些练习题涵盖了从基础到拓展的不同层次,既满足了学生巩固知识的需求,又为学有余力的学生提供了挑战机会。真题感知环节则让学生提前接触中考真题,感受真实的考试情境,了解命题方向和难度,从而提前做好备考准备,增强应试能力。整套 PPT 课件注重知识的系统性和实用性,通过合理的教学设计和丰富的教学资源,为学生提供了一个全面、高效的学习平台。它不仅帮助学生扎实掌握三元一次方程组的概念、求解方法及其应用,还通过实际问题的应用展示了数学的实用性和价值,激发了学生的学习兴趣。这种教学设计不仅有助于学生在数学学习中取得更好的成绩,更培养了他们运用数学知识解决实际问题的能力,为学生的未来发展奠定了坚实的基础。
本套 PPT 课件围绕北师大数学七年级上册 4.2 节“角”(第 3 课时)展开,共包含 24 张幻灯片。其核心目标是助力学生深入理解角的和差的几何意义,能够结合具体图形清晰地表示两个角的和与差,并熟练掌握角的和差运算。在学习过程中,学生将深刻感受到几何图形所蕴含的严谨性和逻辑性,进而养成严谨的解题习惯,增强合作交流意识,同时激发对数学学习的热情。课件内容安排合理,层次分明。首先,引导学生回顾角的大小关系及比较方法,为后续学习奠定基础。随后,通过师生共同探究,深入讲解“如何作一个角等于已知角”以及“作图比较角的大小”的方法,使学生在实践中掌握关键技巧。进入典例分析环节,针对具体问题展开详细剖析,旨在提高学生解决实际问题的能力,帮助他们学会举一反三,灵活运用所学知识。此外,课件还精心设计了巩固练习和真题感知两个环节。通过多样化的练习,学生能够进一步加深对知识点的理解,强化应用能力,将所学知识转化为解决实际问题的技能。整套 PPT 课件内容丰富,形式多样,既注重知识的传授,又重视学生能力的培养,是一份有助于提升学生数学素养的优质教学资源。
本套 PPT 是为北师大版八年级数学上册《实数》章节中的 “2.3 二次根式” 第二课时——“最简二次根式” 设计的。它围绕 “最简二次根式” 的核心概念,为学生设定了三个明确的学习目标:首先,让学生准确理解并掌握最简二次根式的定义;其次,培养学生将复杂的二次根式化简为最简形式的能力;最后,使学生能够熟练进行同类二次根式的合并运算。在内容设计上,PPT 开篇先带领学生回顾二次根式的定义与基本性质,帮助学生巩固已学知识,为新知识的学习做好铺垫。随后,PPT 引入最简二次根式的关键特征——被开方数中既不能含有分母,也不能包含能够完全开方的因数或因式。通过具体的例题,引导学生判断哪些二次根式属于最简二次根式,帮助学生初步建立对最简二次根式的直观认识。接下来,PPT 重点讲解了二次根式的化简方法,其中特别强调了分母有理化这一技巧。例如,通过将一个分数形式的二次根式进行配乘操作,使其分母变为有理数,从而实现化简。同时,PPT 引入了同类二次根式的概念,明确指出只有当两个二次根式在化简后被开方数相同时,它们才能进行合并运算。为了帮助学生更好地理解这一规则,PPT 配备了相应的加减运算例题,让学生在实际操作中体会同类二次根式的合并方法。此外,PPT 还设计了多种类型的练习题,包括判断题、化简题和运算题,让学生在反复练习中加深对知识的理解和运用。最后,通过梳理知识框架,帮助学生系统地回顾和巩固最简二次根式的判定方法、化简技巧以及同类二次根式的运算规则等重要知识点,助力学生构建完整的知识体系,为后续的数学学习打下坚实的基础。
这是一套为北师大版八年级数学上册《实数》章节中 “2.3 二次根式” 第 3 课时设计的 PPT 课件,主题为 “二次根式的混合运算”。该课件旨在帮助学生系统掌握二次根式混合运算的相关知识和技能,明确设定了三大学习目标:一是让学生掌握二次根式混合运算的顺序;二是学会分母有理化的方法;三是能够运用混合运算解决实际问题。在内容编排上,PPT 首先通过回顾最简二次根式以及二次根式的乘除加减等旧知识,帮助学生巩固已学内容,为新知识的学习做好铺垫。随后,PPT 明确了二次根式混合运算的顺序,指出其与有理数运算顺序一致:先进行乘方和开方运算,再进行乘除运算,最后进行加减运算,若有括号则优先计算括号内的内容。在重点内容讲解部分,PPT 详细介绍了分母有理化的方法。通过举例说明,引导学生利用平方差公式消去分母中的根号,从而实现分母的有理化。这种方法不仅帮助学生解决了实际计算中的难点,还提升了他们的运算技巧和思维能力。为了更好地展示混合运算的步骤,PPT 配合具体的例题进行详细讲解。这些例题不仅涵盖了混合运算的基本规则,还结合了图形面积计算等实际应用场景,帮助学生理解二次根式混合运算在实际生活中的应用价值。通过这种理论与实践相结合的方式,学生能够更直观地感受到数学知识的实际用途,从而提高学习兴趣和动力。在巩固练习环节,PPT 设计了多样化的达标检测题,包括运算选择题和化简题等。这些练习题旨在帮助学生进一步巩固混合运算的流程和分母有理化的技巧,检验学生对知识的掌握程度。最后,PPT 对本节课的知识框架进行了梳理,帮助学生系统总结所学内容,进一步强化对二次根式混合运算的理解和记忆。这种结构化的总结方式,不仅有助于学生构建完整的知识体系,还能为后续的学习提供坚实的基础。整套 PPT 通过清晰的知识回顾、详细的步骤讲解、丰富的实际应用以及系统的练习巩固,帮助学生扎实掌握二次根式混合运算的相关知识和技能。这种设计方式充分贴合八年级学生的认知特点,能够有效提升学生的学习效果,培养他们的数学思维能力和解决问题的能力。
这套北师大版七年级上册《生活中的立体图形》单元复习课件,以发展学生空间观念与几何直观为核心目标,精心架构目标引领—图谱建构—考点深耕—题型突破—变式提升的立体化复习体系,系统整合几何图形认知的核心内容,助力学生完成从感性认识到理性思维的跨越。课件起始环节目标导向鲜明,首先明确本单元复习的三维目标:知识与技能层面掌握常见几何体的特征与度量关系,过程与方法层面经历观察、操作、想象、推理等数学活动,情感态度层面感受几何图形与现实世界的紧密联系。继而呈现单元知识图谱,将纷繁的学习内容凝练为四大核心板块——生活中的立体图形识别、表面展开与折叠转化、三视图观察与还原、点线面体的生成关系,形成层次清晰、关联紧密的知识网络,为学生提供整体认知支架。考点精讲部分遵循认知规律,由静到动、由表及里层层深入。第一层级聚焦几何体静态特征,系统梳理棱柱、圆柱、圆锥、球体等常见立体图形的结构要素,包括面数、棱数、顶点数及其分类标准,建立规范的几何语言描述。第二层级探究二维与三维的转化机制,深入剖析正方体11种表面展开图的识别规律与折叠还原技巧,同时拓展讲解平面截几何体所得截面的形状特征,渗透降维思考方法。第三层级强化空间观察能力,详细分析从正面、左面、上面三个不同方向观察几何体所得视图的对应关系,总结长对正、高平齐、宽相等的视图规律,训练根据视图还原几何体的逆向思维。第四层级揭示几何要素的动态生成,通过动画演示或实物操作,阐释点动成线、线动成面、面动成体的运动轨迹,建立静态图形与动态生成之间的本质联系,完善几何认知结构。题型剖析环节紧扣核心考点,设置专项突破模块。针对几何体辨认题型,训练从复杂实物中抽象出基本几何体的能力;针对展开图判断题型,强化空间想象与规律应用;针对截面形状分析题型,培养分类讨论与极限思考;针对视图还原题型,提升信息整合与空间建构水平。每类题型均配备典型例题与详细规范的解题步骤,注重思维过程的显性化呈现。变式训练部分设计多层次实战习题,通过改变条件、变换问法、综合渗透等方式,引导学生在不同情境中灵活运用所学知识,实现解题策略的有效迁移。整套课件逻辑严谨、内容丰富,既重视基础知识的系统梳理,又关注空间观念与几何推理能力的进阶提升,全面助力学生构建完整的几何认知体系,发展数学核心素养。
这套北师大版七年级上册《基本平面图形》单元复习PPT,精心打造了一套完整而系统的闭环复习体系,将知识图谱构建、核心考点精讲、典型题型深度剖析以及变式拓展训练有机融合,全面覆盖线段与直线、角的度量与运算、多边形性质以及圆与扇形四大核心知识板块,旨在帮助学生夯实几何基础、提升空间想象能力与逻辑推理素养。在整体架构设计上,该复习课件开篇即呈现清晰的知识框架图谱,明确本单元的复习目标与重难点分布,使学生对即将展开的学习内容形成宏观认知。随后,课件按照知识模块逐层递进展开深度讲解:首先聚焦线段、射线与直线的基本概念,详细阐释三者的定义差异、规范表示方法及核心性质特征,并在此基础上深入推导线段中点的判定条件与线段长度的计算方法,建立完整的线性几何认知体系;其次系统梳理角的相关知识,从角的动态与静态定义出发,讲解角度的度量单位与换算关系,对锐角、直角、钝角、平角、周角进行分类辨析,重点突破角平分线的性质应用,并针对时钟指针夹角计算、复杂角度运算等学生易错难点设计专项突破策略;继而深入剖析多边形的定义要素、对角线条数的变化规律以及内角和公式的推导过程,培养学生从特殊到一般的归纳推理能力;最后完整呈现圆与扇形的基本概念体系,详解弧长、面积计算公式,并针对扇形面积比与圆心角度数的互求问题提供系统的解题方法论。在题型剖析环节,课件紧扣中考及期末统考高频考点,精心设计图形计数、线段和差倍分计算、动态时钟夹角问题、复杂角度运算、多边形边数与内角和互求等典型例题,每道例题均配备规范完整的解题步骤与思路点拨,引导学生掌握分析—建模—求解—验证的科学解题流程。变式训练部分则提供多组难度递进的实战习题,通过改变已知条件、交换结论与条件、引入实际情境等方式,有效强化学生的知识迁移能力与灵活应用水平,真正实现从学会到会学的能力跃升。整套复习资料逻辑脉络清晰严密,既注重基础知识的系统梳理与查漏补缺,又强调数学思想方法的渗透与几何直观素养的培养,通过知识—方法—能力的三维递进,助力学生构建起立体完整的平面图形知识体系,全面提升几何运算求解能力与推理论证素养,为后续平面几何的深入学习奠定坚实基础。
这套北师大版七年级上册《整式及其加减》单元复习PPT,精心构建了一套目标导向明确、结构层次分明的系统化复习体系,将目标导学、知识图谱构建、核心考点精讲、典型题型深度剖析以及针对性强化训练五大环节有机整合,全面围绕整式相关知识展开深度复习,旨在帮助学生夯实代数基础、提升运算能力与数学思维品质。在整体架构设计上,该复习课件开篇即明确本单元的具体复习目标,使学生清晰把握学习方向与预期达成标准。随后通过精心绘制的知识图谱,将本单元繁杂的知识点进行结构化梳理,系统涵盖代数式的基础概念、整式的分类与性质、整式加减的运算法则以及数学知识在实际问题中的综合应用四大核心板块,帮助学生建立起完整的知识网络与认知框架。在考点精讲环节,课件采用分模块突破的策略,层层递进展开深度讲解:首先详细阐释代数式的定义、书写规范与意义解读,进而深入讲解单项式的系数、次数等核心概念,以及多项式的项、次数、常数项、升幂降幂排列等关键要素,夯实整式概念的认知基础;随后聚焦整式加减这一运算核心,系统梳理同类项的判定标准、合并同类项的法则要点、去括号时的符号变化规律以及整式加减运算的标准化步骤,培养学生准确、规范的运算能力;在此基础上进一步拓展规律探索问题的解题策略、新定义运算的理解与转化方法等综合拓展考点,提升学生的知识迁移与灵活应用能力。题型剖析环节紧扣课标要求与考试命题趋势,针对核心考点精心设计专项例题,全面覆盖列代数式表示数量关系、整式相关概念的辨析判断、整式加减的基本运算、化简求值的规范流程、与字母取值无关型问题的破解思路、数字与图形规律探究的归纳方法等高频考查题型。每道例题均配备详尽的解题步骤拆解、易错点警示与解题技巧总结,引导学生掌握科学的分析问题与解决问题的方法论。针对训练部分则提供多组难度分层、类型丰富的实战习题,强化知识向能力的转化,习题涵盖概念辨析判断、准确计算求值、实际问题建模求解等多种类型,既巩固基础运算技能,又培养数学建模意识。整套复习资料逻辑严谨缜密,既注重基础知识的扎实夯实,又强调数学思想方法的有机渗透,将抽象的代数知识与丰富的实际问题情境紧密结合,深度融入转化思想、归纳推理、整体代换等重要的数学思想方法,助力学生构建起完整而系统的整式知识体系,切实提升运算求解的准确性与效率,培养逻辑推理的严密性与深刻性,发展数学抽象与数学建模的核心素养。
这套北师大版七年级上册《有理数》单元复习PPT,精心打造了一套目标引领清晰、环节衔接紧密的全闭环复习体系,将目标导学、知识图谱构建、核心考点精讲、典型题型深度剖析以及针对性强化训练五大模块有机融合,全面覆盖有理数的核心概念认知与运算技能培养,旨在帮助学生系统梳理知识脉络、突破运算难点、提升数学思维品质。在整体架构设计上,该复习课件开篇即明确本单元的具体复习目标,使学生对学习任务与能力达成标准形成清晰认知。随后通过科学绘制的知识图谱,将本单元庞杂的知识点进行条理化整合,系统涵盖有理数的基本概念与分类标准、数轴的三要素及应用、相反数的代数与几何意义、绝对值的定义与性质、有理数四则运算的法则体系、乘方运算的规律特征、科学记数法的表示方法以及数学知识在实际问题中的综合应用七大核心板块,帮助学生建立起立体完整的知识网络。在考点精讲环节,课件采用分模块递进式讲解策略,层层深入突破重难点:首先详细阐释有理数的严格定义、科学分类方法(按定义分为整数与分数,按符号分为正有理数、零、负有理数)以及正负数在实际情境中的意义表示,奠定概念认知基础;再系统梳理数轴的画法规范、三要素特征,相反数的定义、性质及求法,绝对值的几何意义与代数性质,并结合数轴工具深入讲解有理数大小比较的规则与技巧;随后重点突破加、减、乘、除、乘方五种基本运算的法则要点、运算律的灵活应用以及混合运算的优先级顺序,在运算教学中深度渗透转化与化归的数学思想;最后专题讲解科学记数法的表示规范、近似数的精确度判定以及绝对值非负性等核心性质的综合应用,完善知识体系的深度与广度。题型剖析环节精准对接考试命题热点,针对核心考点精心设计专项例题,全面覆盖科学记数法的规范表示与还原、有理数相关概念的辨析与分类讨论、利用数轴进行大小比较与范围确定、复杂混合运算的准确求解、非负性性质(如绝对值、偶次幂)的综合应用、以及有理数知识在实际问题中的建模求解等高频考查题型。每道例题均配备详尽的解题步骤演示、关键思路点拨、易错点警示与解题技巧提炼,引导学生掌握理解题意—选择方法—规范运算—检验反思的科学解题流程。针对训练部分精心设计多组层次分明、类型丰富的实战习题,通过概念辨析判断题强化基础理解,通过准确计算求值题提升运算技能,通过实际问题应用题培养建模意识,有效促进知识向能力的转化与迁移。整套复习资料逻辑体系严谨缜密,既高度重视基础知识的扎实夯实与运算技能的规范训练,又注重将抽象的有理数概念与丰富的实际问题情境深度融合,在解题过程中自然渗透分类讨论、数形结合、转化化归等重要数学思想方法,助力学生构建起完整系统的有理数知识体系,切实提升运算求解的准确性、速度与灵活性,培养逻辑推理的严密性与深刻性,发展数学抽象、逻辑推理与数学建模的核心素养,为后续代数内容的深入学习奠定坚实基础。
学习关于新时代推进西部大开发形成新格局的指导意见,了解中国西部大开发新格局建设。中国地大物博,地缘广阔。中国的经济发展受到地理条件、经济发展水平等因素的影响,经济发展速度有很大的差距,中国的东部、南部经济发达,发展速度很快,中国的西部和北部发展速度缓慢滞后。为全面实现小康社会,开启全面建设社会主义现代化国家新征程,加快形成西部大开发新格局。
PPT模板展示了学习与解读我国领导同志在湖南考察期间发表的重要讲话内容,积极响应国家追求高质量发展思想的号召,积极探索发展新路子,谱写新时代下的中国特色社会主义。PPT以彩云作为主要背景,装饰以党旗、万里长城的周边元素,营造了激动昂扬的氛围。PPT内容首先论述了我国领导同志在湖南考察的基础情况,其次在收取湖南地区的工作汇报后进行了重要的总结讲话,最后专门召开了湖南基层代表座谈会,积极讨论国家民生大事。
PPT模板展示了我国某党支部举办的学习与解读进一步完善公证服务价格形成机制的指导意见,PPT背景以温暖的红色系为主,装饰以党徽、和平鸽、城市标志建筑模型以及天安门广场剪画等元素,营造了简单大气的氛围。PPT内容主要围绕《意见》颁布的现实背景、总体思维路线、大致内容方向以及相关问题的解答,帮助社会大众解除居民房产、公证费减免政策以及政策落实到位等方面所存在的疑惑。
PPT主要展示了高中语文人教版高一必修《论语》教育教学的主题内容。PPT的整体色调以灰蓝色以及白色为主,将仙鹤山脉,渔船,孔子的人物形象,书本以及与论语这本书有关的图片作为主要装饰物,给人以典雅、雅致之感。PPT的主要内容包括孔子简介、关于论语、教学目标、课时目标、注音、文言文翻译的原则、译文以及启示这几个部分。旨在通过这节课的学习,掌握孔子以及论语的相关常识,了解文言文字词的含义及其内容。
PPT模板从诗集简介、艺术特色、作者介绍、作品简介、时代精神、主要思想六个部分来展开介绍关于文学作品《女神》的鉴赏分析的具体内容。PPT模板的第一部分介绍了《女神》的基本信息以及其主题思想。第二部分阐述了《女神》的艺术特色。第三部分介绍了《女神》的作者郭沫若的基本信息以及其文学影响力。第四部分展示了对于《女神》这一书本的评价内容。第五部分阐述了《女神》体现的时代精神。第六部分阐述了《女神》的主题思想。
这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是函数的导数与函数的单调性之间的关系。PPT的第二个部分向我们介绍的是观察函数的图像变化等等内容。PPT的第三个部分向我们介绍的是讲解函数等等内容。PPT的第四个部分向我们介绍的是极值函数与导数之间的辩证关系等等内容。PPT的第五个部分向我们介绍的是课堂小结。PPT的第六个部分向我们介绍的是板书设计。
该PPT从三个方面介绍了以结果为导向的执行力的相关内容。第一个方面是执行力与结果,主要介绍了执行力与结果的概念以及二者之间的联系,并且提供例子供我们参考。第二个方面是企业和客户及员工的关系。主要围绕商业的基本逻辑、商业交换的本质及企业的生存底线三个部分进行介绍。第三个方面是如何做一个持续提供结果的执行者,介绍了做好结果的三大原则和三种思维,详细论述了镜子思维的理论。
这份PPT由四个部分组成。第一部分内容是作者介绍,此模板一方面介绍了作者鲁迅的身份地位和作品,另一方面是鲁迅的重大贡献和影响。第二部分内容是创作背景,这一部分主要包括《野草》的时代背景和象征。第三部分内容是主题思想,这一部分首先介绍了《野草》主题思想的分类,其次是《野草》主题思想的特征,最后是对《野草》所承载的生命哲学进行介绍。第四部分内容是艺术特色,包括象征主义、现实主义、语言艺术。
这份PowerPoint由三个部分构成。第一部分内容是幼儿园体育活动与基本动作练习,包括基本体操、身体素质、体育器械和创造性身体活动的练习。第二部分内容是走步基本动作与要求,这一部分首先介绍了走步的常见形式和动作要求,其次是走步基本动作内容,最后对走步练习的锻炼价值、教学要点进行简要说明。第三部分内容是跑步基本动作与要求,这一部分主要包括跑步的常见形式、基本动作内容和动作要求。
PPT全称是PowerPoint,麦克素材网为你提供复学疏导PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。