这份二十四页的演示文稿,紧扣北师大2024版八年级上册第一章《1.3 勾股定理的应用》,以“把定理搬到现场,让斜边开口说话”为立意,带领学生在真实情境与几何构造之间架起桥梁,完成“会算—会画—会选”的三级跳。课堂依“情境—探究—巩固—总结”四环推进: 开篇“问题引入”抛出装修工人李叔叔的烦心事——一面矩形装饰板需在对角线上精准开孔,手头只有卷尺和笔,如何最快找到对角长度?视频定格,学生脱口而出“用勾股定理”,生活需求瞬间转化为数学任务;教师追问“若板长1米、宽0.6米,对角线多长?”学生口算得出√1.36≈1.17米,第一次体验定理的“秒算”威力。 “新知探究”分三步走:先几何计算——给定直角三角形两边求第三边,强调“谁斜谁写c”;再构造直角——把“断裂的数轴”请上台,学生在网格纸上以单位长度为直角边,斜边自然得到√2、√5等无理数,用圆规在数轴上截取而点,直观看到“无理数也有家”;最后解决实际——把“折叠梯子靠墙面”“游船最短路径”两道真题拍成小动画,学生独立画示意图、标已知、设未知、列方程、求值,教师用颜色覆盖功能对比不同解法,归纳“找直角—定斜边—列平方和”三步解题模板。 “巩固练习”分层推送:基础层直接代入求第三边;提高层在立体展开图中找隐含直角;拓展层用逆定理判定直角后再算面积,平板实时呈现正确率,教师挑错因现场“开刀”。 结课用“一句话接龙”——每人说一个今天见识到的定理新用途,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“对角线”场景,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以真实任务驱动,以数轴构造拓展,以分层训练落地,不仅让学生熟练运用勾股定理解决长度、路径、无理数定位等多类问题,更在“量一量、画一画、比一比”的亲历中,深化数形结合思想,为后续四边形、圆及坐标几何的学习奠定坚实的方法与信心基础。
这套共四十三页的复习课件,专为北师大2024版八年级上册第一章《勾股定理》收官而制。设计者以“把散落的珍珠串成项链”为理念,用六大板块层层递进,帮学生在两节课内迅速搭起知识框架、扫清易错盲点、提升实战信心。开篇先亮“目标雷达图”,明确三大重点——定理结构、逆定理判定、实际应用,两大难点——斜边辨认、无理数在数轴上的定位,学生抬头便知复习航线。随后展开“知识图谱”思维导图:直角三角形、三边关系、平方和、逆定理、数轴构造、生活应用六条分支彩色呈现,节点留空,学生用电子笔现场补充典型例题或警句,个人框架与班级智慧瞬间同步。第三环节“考点串讲”用一张六列表格横向对比文字语言、符号语言、图示、变式、常见错因、生活场景,教师只当“报幕员”,让学生纵向观察:无论图形怎样旋转,只要出现“直角+两边平方和”即联想定理,出现“三边平方和相等”即联想逆定理,形成条件反射。第四环节“题型剖析”化身“错题医院”,把月考失分率最高的五类题型制成电子病历:求斜边忘开方、判定直角用错边、立体展开图找不到直角、数轴描点舍近求远、实际问题示意图画歪,学生分组扮演“小医生”完成诊断—开方—预防三栏,再派代表登台讲解,台下同学用弹幕投票“最佳处方”,在互评互改中完成深度二次学习。第五环节“针对训练”分层推送:A层在线判断快速抢答,系统即时红绿反馈;B层给出“折叠梯子靠墙”实景,要求先画示意图再算安全高度;C层选用近年中考真题,立体展开后求最短路径,鼓励用两种方法并列解答,平板实时生成“知识掌握度”折线,教师依据数据精准面对面辅导。最后“课堂总结”用“电梯演讲”模式——每人30秒说清自己最大的收获与仍存困惑,弹幕滚动生成词云,教师提炼共性问题录制三分钟微课,确保复习闭环延伸到家庭。整套课件通过“目标可视—网络建构—考点透视—错因剖析—精准训练—多元总结”的六步闭环,不仅让学生系统掌握勾股定理及其逆定理的结构、判定与应用,更在合作、分享、碰撞中培养严谨习惯、提升模型意识,为后续四边形、圆及坐标几何的证明与计算奠定扎实的方法、思维与情感三重根基。
这套共二十七页的PPT课件,紧扣北师大2024版八年级上册第一章《1.1 探索勾股定理》第1课时,以“火灾救援”情境破题,用“数格子”探究奠基,借“表格归纳”升华,带领学生经历一次“观察—猜想—验证—初用”的完整探索之旅。课堂五步递进:情境引入—温故知新—新知探究—题型拓展—总结作业。 开篇播放“高楼救火”微视频:云梯必须靠到着火点正下方,楼高、梯长、街宽构成神秘三角形,教师一句“梯长够吗?”把生命安全问题抛给学生,瞬间点燃探究热情;接着用“温故知新”快闪复习等腰三角形底边与高、腰长的数量关系,为即将出场的等腰直角三角形埋下类比伏笔。 核心环节“新知探究”让学生回到方格纸战场:先给等腰直角三角形三边蒙面,只露顶点坐标,学生用“数格子”求斜边上正方形面积,发现两个小正方形面积之和恰好等于大正方形,填表、描点、观察比值,猜想“两直角边平方和等于斜边平方”;再换三组非等腰直角三角形验证,数据依旧成立,猜想升级为定理。教师适时板书符号表达a+b=c,并示范用定理回算云梯问题,完成“生活—数学—再回生活”的闭环。 “题型拓展”分三级:基础层算直角斜边;提高层知斜边求直角边;拓展层用真题测量河宽,学生独立画示意图、列方程、求值,平板实时呈现正确率,教师挑错因现场“开方”。 结课用“电梯演讲”——30秒说清勾股定理内容及用途,词云自动生成;作业分两层:A层教材习题巩固计算,B层拍摄身边“直角”照片,测量后验证定理,把探索延伸到生活。整套课件以情境引路、以活动赋能、以技术反馈,不仅让学生亲历定理诞生,更在“我能用数学保安全”的成就感中,点燃继续钻研几何的浓厚兴趣。
这套二十九页的PPT课件,承接北师大2024版八年级上册第一章《1.1 探索勾股定理》第2课时,以“验证—应用—内化”为主线,引导学生在第一课时的猜想基础上,用拼图、割补、代数运算等多种方法为勾股定理盖上“可信印章”,并首次把定理投入生活沙场,体验“斜边一量,问题破冰”的实用威力。课堂五步推进:直引—温故—验证—题型—总结作业。 开门见山,教师先播放“云梯救援”后续:上次只算出“够得着”,今天却要“最快到达”,斜边长度再度成为焦点,问题抛出即点燃验证欲望;紧接着“温故知新”用30秒快闪复习文字、符号、图形三种表达,确保每位学生都能脱口而出a+b=c。 核心环节“新知探究”让学生化身“几何律师”:先发放两副不同颜色的直角三角形硬卡,四人一组用“割补拼图”将四个直角边正方形重新组合成斜边大正方形,通过面积守恒现场“看见”a+b=c;再切换到GeoGebra,用坐标法计算斜边平方,代数验证同样成立,几何直观与代数严谨双轨并行,定理可信度瞬间拉满。 “题型拓展”分三级:基础层知两边求第三边;提高层用真题测河宽,先画示意图再列方程;拓展层引入“最短路径”问题,把立体表面展开成平面直角三角形,求出最小 ribbon 长度,平板实时统计正确率,教师挑典型错误现场“开刀”。 结课用“一句话接龙”——每人说一个勾股定理的生活场景,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“斜边”实例,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以验证立信、以应用立身、以技术赋能,不仅让学生“相信”定理,更让他们“想用、会用、爱用”定理,为后续勾股逆定理与几何证明奠定坚实的心理与方法双重基础。
本套PPT课件在内容上分为新知探究、例题解析、巩固练习共计三个部分;第一部分针对勾股定理的具体内容和要点提示进行了知识梳理;第二部分进行了三角形勾股定理的逆定理的实验操作计算,推导了勾股定理的逆定理,并展示了例题的计算过程;第三部分针对考点提供了大量的计算题,巩固学生所学知识,让学生自行分析做题方法,并从中得出相应的结论和总结解题规律;
PowerPoint从四个部分来展开介绍关于勾股定理的逆定理这一课时的相关内容。PPT模板的第一个部分介绍了本堂课的学习目标。第二个部分为知识讲解,运用幻灯片对勾股定理的逆定理的应用进行了分析说明。 第三各部分为随堂训练,通过演示文稿中的实际问题,加深学生对新知的理解,达到巩固所学知识点的目的。第四个部分进行了课堂小结,对今天所学的勾股定理的逆定理的应用进行了回顾。
这是一套针对统编版语文中职基础模块上册《反对党八股(节选)》制作的 PPT 课件,共包含 46 张幻灯片。本课程的设置旨在帮助学生从多个角度深入理解这篇课文。首先,让学生了解课文作者的相关情况、创作背景以及这篇课文所具有的文学价值。其次,引导学生学习文章中所列举的典型八股文范例,并通过对这些范例的分析,让学生明白八股文的局限性和缺陷所在。此外,本课程还肩负着激发学生对语文学习兴趣的重要使命,通过一系列教学活动,培养学生的严谨思维习惯,提升他们的批判性思维能力以及独立思考的能力。该套 PPT 课件围绕五个方面展开对本节课程的学习。第一部分是初读课文,划分文章层次。在这一部分,教师会带领学生认读课文中的生字,帮助学生理解相关词语的含义,同时向学生介绍一些必要的文学知识。在此基础上,引导学生尝试根据文章的内容对文章的层次结构进行划分。第二部分是研读内容,探究文章思路。这一部分主要通过提出一系列问题,引导学生深入课文,从课文中寻找答案,从而更好地理解文章的思路和内涵。第三部分是鉴赏语言,感受文字魅力。在这一部分,教师会根据课文中的语句,引导学生从表达目的、听众感受等不同角度对语句的表达效果进行分析,让学生在鉴赏语言的过程中感受文字的独特魅力。第四部分是结合背景,分析现实意义。这一部分要求学生将课文的创作背景与现实生活联系起来,深入分析课文所具有的现实意义,让学生明白经典作品对现代社会的启示和价值。第五部分是拓展阅读。通过这一部分的学习,进一步拓宽学生的阅读视野,加深学生对课文主题和相关内容的理解,使学生能够在更广阔的阅读范围内提升自己的语文素养和阅读能力。
PPT模板展示了我国发展改革委等部门针对促进国民消费的质量水平,努力加快国内经济市场的建设强化工作进程,联合印发了对应的实施措施意见内容,PPT背景以虚化的山水画为底,装饰以天安门广场、党徽、和平鸽、石狮子以及城市蓝图等元素,描绘了国民经济一派繁华的景象。PPT内容主要从国内经济市场、文化休闲消费、城乡消费网络、智能消费体系以及国民消费能力与消费环境这几个方面进行精细的安排与规划,力争从各方面做到完善,大力构建国家消费市场有质有量的发展平台,为国民消费提供更好的市场环境。
这套PPT课件是为初中九年级历史下册部编版第一单元“殖民地人民的反抗与资本主义制度的扩展”专门设计的动态教学模板,涵盖了39页详尽的教学内容。课件的主旨在于深入解析该单元的教材内容,明确学习目标,并合理规划课时安排,以促进学生对历史知识的深入理解和掌握。课件的内容构建始于对单元课标的深入解读,强调从时空概念、历史解释、家国情怀、唯物史观等多个维度进行教学。这样的多角度教学方法旨在帮助学生构建一个全面的历史知识体系,使他们能够从不同视角理解历史事件。接着,课件详细介绍了这一时期的历史阶段特征,指出资本主义力量通过殖民活动迅速扩张,为资本主义的进一步发展奠定了基础。这一部分内容的讲解有助于学生理解资本主义扩张的历史背景及其对全球历史的影响。在单元知识内容的梳理上,课件细致地介绍了单元的时空背景,使学生能够清晰地了解历史事件的脉络和背景。通过对单元知识的系统梳理,课件为学生提供了一个清晰的学习路径。课件的最后部分总结了各个课时的教学重点,并提供了单元教学的提示。通过思维导图的形式,课件总结了中外历史上亚非拉的民族解放运动,帮助学生形成直观的历史认知。此外,课件还以“看电影学历史”的活动方案设计为例,展示了如何设计有趣且富有教育意义的单元活动,以提升学生的学习积极性和参与度。总体而言,这套PPT课件是一个结构清晰、内容丰富、互动性强的教学工具。它不仅为教师提供了一个全面的教学框架,也为学生提供了一个易于理解和记忆的历史学习平台。通过这套课件,教师可以更有效地引导学生探索殖民地人民的反抗和资本主义制度的扩展,理解这一时期对世界历史发展的重要性。
本套PPT模板在内容上首先介绍了本节课的教学目标,包括让学生体会殖民地人民反抗侵略的英勇精神并培养学生的爱国主义情感、认识资本主义制度扩展过程中的进步性和局限性并树立正确的历史观等;接着介绍了本单元的阶段特征,包括殖民抗争和资本主义制度的巩固与扩展等,并结合关键词展示了单元知识的概览;然后梳理了单元知识点,包括拉丁美洲的独立运动、印度民族大起义、彼得一世改革、1861改革、美国南北战争等;最后总结了课堂内容;
这是一套专为高一语文《反对党八股(节选)》设计的同步备课演示文稿,共包含36张幻灯片。在本堂课的教学设计中,教师采用了由浅入深、循序渐进的教学思路。首先,通过介绍毛泽东的写作风格以及作品所处的社会背景,引导学生理解本文的写作目的,从而激发学生的学习兴趣。接着,教师引导学生了解题目的含义,明确八股文的定义及其特点,为深入理解课文内容打下基础。最后,通过对课文背景和内容的深入分析,帮助学生梳理课文的基本结构,明确文章段落的各个层次,使学生能够从宏观上把握文章的脉络。该演示文稿由四个部分组成。第一部分是学习目标,清晰地阐述了本节课的三大学习目标,为学生的学习指明方向。第二部分是学习重难点,这一部分着重帮助学生掌握议论文的“三段式”逻辑思路和论证结构,同时引导学生学会赏析文章的语言特色,提升学生的阅读鉴赏能力。第三部分是课堂导入,通过精心设计的课堂情境,自然地引入课堂内容,吸引学生的注意力,激发他们的学习热情。第四部分是学习任务,主要包括梳理课文思路和掌握写作特色,通过具体的任务设计,引导学生深入探究文本,提升学生的分析能力和写作水平。通过这样的教学设计,学生不仅能够理解文章的内涵,还能在思想和写作上获得启发。
这套二十六帧的演示文稿,紧扣北师大2024版八年级上册第一章《1.2 一定是直角三角形吗》,以“判定”为核心,引领学生在“正向用定理—逆向找直角”的思维反转中,完成从“知道勾股”到“构造直角”的跃迁。课堂循“情境—温故—探究—题型—总结”五环递进: 开篇情境用“装修师傅如何快速检验墙角是否直角”的生活短片切入,学生眼见师傅手持卷尺测量三边后笃定“这是直角”,悬念顿生——“仅凭三边就能下定论?”问题一抛,求知欲瞬间点燃。 温故知新仅用两分钟快闪:文字、符号、图形三式齐现,学生齐背a+b=c,教师追问“条件是什么?结论又是什么?”为后续条件与结论对调埋下伏笔。 新知探究让学生亲历“实验—猜想—证明”的完整科研流程:先分组用塑料小棒拼出三边长分别为3、4、5的三角形,再用三角板量角,发现“真的是90”;接着发放五组不同的三边数据(5,12,13;8,15,17;4,6,8;7,24,25;5,7,9),各组动手拼图并填写“三边平方关系—最大角目测—是否直角”表格,数据一目了然:满足a+b=c的恰好都是直角三角形,反之则不是,猜想由此诞生;最后教师用几何画板动态演示,以余弦定理一般推导,确认“若平方和相等,则对角为直角”,勾股逆定理正式落户。 题型环节分三级:基础层判断三边能否构成直角三角形;提高层在网格中找点构造直角;拓展层用真题测量河宽,需先依据逆定理判定直角再建模计算,平板实时统计正确率,教师挑典型错误现场“开刀”。 课堂小结用“一句话接龙”——每人说一个逆定理的生活用途,弹幕滚成词云;作业分两层:A层教材习题巩固判定,B层拍摄家中“直角”物体,测量三边验证逆定理并录成15秒短视频,把数学发现带回家。整套课件以生活悬念激发兴趣,以实验数据孕育猜想,以严格证明确认结论,不仅让学生清晰区分“定理”与“逆定理”的条件结论互换,更在“量一量、拼一拼、证一证”的亲历过程中,建立起“数形结合”的直观模型,为后续几何证明与空间构造奠定扎实的方法与信心基础。
PPT全称是PowerPoint,麦克素材网为你提供扩股PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。