这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是函数的导数与函数的单调性之间的关系。PPT的第二个部分向我们介绍的是观察函数的图像变化等等内容。PPT的第三个部分向我们介绍的是讲解函数等等内容。PPT的第四个部分向我们介绍的是极值函数与导数之间的辩证关系等等内容。PPT的第五个部分向我们介绍的是课堂小结。PPT的第六个部分向我们介绍的是板书设计。
这是一套专为八年级数学下册一次函数单元复习设计的PPT,共包含55页。在本节课的复习过程中,教师通过系统梳理本单元的知识点,帮助学生构建完整的知识体系。同时,通过展示典型例题,引导学生在自主探究和小组合作中分析数学问题,从而提升他们的思维水平和解题能力。此外,教师还注重引导学生总结解题经验,帮助他们更好地应用所学知识,进一步提高复习效果。该PPT由六个部分组成。第一部分是思维导图,通过直观的图表形式,首先介绍了一次函数的定义,然后对函数的实际应用进行了详细说明。这一部分帮助学生从整体上把握一次函数的核心概念及其在实际生活中的应用价值,为后续的复习奠定基础。第二部分是知识串讲,系统讲解了一次函数的相关知识。这一部分包括画函数图象的一般步骤、函数的三种表示方法(解析式、图象、表格)、正比例函数的概念及其图象特征。通过详细的知识讲解,帮助学生巩固基础知识,理解一次函数的基本性质和特点。第三部分是考点解析,通过展示与函数有关的概念的相应习题,帮助学生掌握重点考点。这些习题涵盖了本单元的核心知识点,通过实际操作和练习,学生能够更好地理解和应用所学知识,提高解题能力。第四部分是针对训练,包括单项选择题和填空题。这些练习题设计得针对性强,旨在帮助学生巩固所学知识,查漏补缺。通过这些训练,学生可以进一步熟悉一次函数的解题思路和方法,提升解题技巧。第五部分是小结梳理,对本节课的重点内容进行总结和梳理。这一部分帮助学生回顾本节课所学的知识点,加深对一次函数的理解和记忆,同时引导学生总结解题经验,提升解题能力。第六部分是布置作业,为学生提供了课后练习任务。这些作业不仅巩固了课堂所学内容,还帮助学生进一步深化对一次函数的理解和应用,培养他们的自主学习能力。通过这套PPT的教学设计,学生能够在课堂上系统地复习一次函数的相关知识,通过多样化的练习和总结,全面提升数学思维能力和解题能力。这种教学模式不仅有助于学生更好地掌握一次函数的知识,还能为他们在数学学习中培养良好的学习习惯和思维方式。
本套课件共44页,围绕人教A版《数学必修第一册》3.1.1节“函数的概念”(第1课时)精心设计,是一堂集知识建构、思维训练与素养提升于一体的新授课。课堂结束后,学生将在以下方面获得显著收获:一是能够准确理解函数的本质内涵,牢固掌握“定义域、对应关系、值域”这三大核心要素;二是具备辨析两个函数是否相同的能力,能够运用集合与对应的观点进行严谨论证;三是通过教师呈现的大量生活化实例与层层递进的对比探究,亲历概念生成的全过程,在“举三反一”中发展抽象概括与逻辑推理等数学思维品质;四是深刻体会函数在刻画变化规律、解决实际问题中的价值,感受数学与现实世界的紧密联系,从而激发持续的学习兴趣。课件结构清晰,由四大板块构成。第一部分“初识概念”从学生已有经验出发,借助“投信与邮箱”“出租车计价”等形象情境,抽象出对应关系,并通过类比、归纳等思维方式回顾初中“变量说”,自然过渡到高中“集合-对应说”的严格定义,实现认知的螺旋上升。第二部分“三要素解读”依次展开:先用通俗语言阐释“定义域是舞台、对应关系是剧本、值域是演出效果”的比喻,帮助学生建立整体图景;再系统梳理解析式、图像、列表、语言描述等多种表征方式,强调“形异质同”的转化思想;最后通过“判断两个函数是否相同”的典型错例,强化“定义域与对应关系完全一致”的判别标准。第三部分“题型强化”精选两类训练:一是“单项选择”快速诊断易错点,如忽视定义域限制、混淆对应顺序等;二是“解决问题”设置“阶梯水费”“疫情传播模型”等真实任务,引导学生用函数观点建模、运算、解释,体验完整的数学应用流程。第四部分“回顾提升”先以时间轴呈现函数概念从莱布尼茨到康托尔的演进史,彰显数学文化;再用“五点说明”——对象、符号、语言、思想、价值——进行课堂总结,配以即时检测与分层作业,确保学生带着问题来、带着方法走、带着兴趣学。整堂课以“情境—问题—探究—应用—反思”为主线,既关注知识的系统性,又突出思维的深刻性,最终实现“教、学、评”一体化的教学目标。
这套 60 页的演示文稿紧扣《人教 A 版数学必修第一册》3.1.2《函数的表示法(第 2 课时)》,是继第 1 课时之后的深化与提升。课堂目标定位于:让学生在“会认”三种表示法的基础上,真正“会用”并“用得好”。教师首先用一道“快递运费”情境题唤醒旧知——同一规则分别用解析式、列表、图像呈现,引导学生讨论“何时解析式最省力、何时列表最精确、何时图像最直观”,在真实任务中体会“选择合适表示方法”的策略意识。随后,针对学生在画图环节常见的“不会分段、不会取空圈、不会标箭头”三大痛点,教师集中展示“水费阶梯计价”“出租车分段计费”“手机流量限速”等生活案例,让学生通过观察、描点、连线、平移,在反复操作中归纳出“分段函数画图三步诀”:一看断点、二判空心、三标趋势,从而把抽象规则内化为可迁移的技能。课件结构同样分为四大板块。第一板块“函数的三种表示法”不再停留于概念罗列,而是用“同题异构”的方式,把一段文字题同时翻译成解析式、数据表和坐标图,让学生直观比较三种语言的优劣;第二板块“函数的图像”以分段函数为核心,先通过动画演示“折线—跳跃—平台”的视觉特征,再总结“左闭右开、空圈实心、箭头延伸”的绘图规范;第三板块“题型强化训练”双线并行:一条线给出“求分段函数值”的四步程序——找区间、代解析、写结果、合表达,另一条线设置“画分段函数图”的五级闯关,从一次—二次—绝对值层层递进,并在每关嵌入即时反馈;第四板块“小结及随堂练习”先让学生用“三句话”总结本节收获,再布置“基础题 + 拓展题”双层作业:基础题侧重巩固分段函数求值与画图,拓展题则引入“自定义分段规则”的微项目,鼓励学生用手机记录家庭用电曲线、设计节能方案,实现课堂知识向生活情境的迁移。整堂课以“问题驱动—操作体验—反思提升”为主线,既突破“画图难”这一现实障碍,又通过多元任务培养学生的数学建模意识与实际应用能力。
这套人教A版高一数学必修第一册 3.4《函数的应用(一)》的PPT课件共70页,旨在帮助学生深入理解函数模型在实际问题中的应用,并掌握用函数模型解决实际问题的基本步骤。通过具体实例,引导学生自主探究函数模型的应用,激发学生对学习数学的兴趣,培养学生的数学思维能力和应用能力,让学生感受到数学在实际生活中的广泛应用。课件内容围绕四个板块展开:第一部分:分段函数模型的应用这一部分通过具体实例,帮助学生了解解决实际问题的一般步骤,包括审题、建模、求模、还原。例如,通过分析出租车计费、阶梯电价等实际问题,学生将学习如何将复杂问题分解为多个阶段,并用分段函数进行建模。通过具体的解题步骤,学生能够掌握如何根据实际情境选择合适的函数形式,如何求解函数模型,并将结果还原到实际问题中。这种系统化的解题方法不仅帮助学生理解分段函数的应用,还提升了他们的逻辑思维能力。第二部分:用函数模型解决实际问题在这一部分,课件通过一系列实际问题,展示了如何用函数模型解决实际问题。这些问题涵盖了经济、物理、生物等多个领域,如成本与收益分析、物体运动轨迹、种群增长等。通过具体的函数模型(如一次函数、二次函数、指数函数等),学生将学习如何根据问题的特征选择合适的函数类型,如何通过函数模型进行预测和决策。这些实例不仅帮助学生理解函数模型的多样性,还展示了数学在不同领域的广泛应用。第三部分:题型强化训练为了巩固学生对函数模型的理解和应用能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的函数模型,包括分段函数、一次函数、二次函数、指数函数等,帮助学生在多样化的题目中灵活运用所学知识。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。通过重复练习,学生能够熟练掌握解题方法和技巧,提升解题速度和准确性,增强对函数模型应用的掌握。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括分段函数模型的应用、用函数模型解决实际问题的基本步骤等。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从具体实例到系统总结、从理论到实践的逐步引导,帮助学生全面掌握函数模型的应用。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
这套总计 75 张幻灯片的《4.5.3 函数模型的应用》PPT 课件,对应人教 A 版高一数学必修第一册,旨在引领学生综合运用函数图像、方程、不等式及信息技术,从实际问题中抽象变量关系,求出未知参数、最值或预测值,并完整体验“情境—假设—建模—求解—检验—解释”的闭环流程,从而切实提升数学建模能力与数据分析素养。课件以“问题情境驱动、技术深度介入、反思及时跟进”为主线,层层递进地设置四大板块。首板块“已知函数模型解决实际问题”精选人口增长、药物代谢、金融复利等典型案例,引导学生辨析一次、二次、指数、对数及分段模型的适用边界,借助表格、图像与代数运算多维度解析模型参数的现实意义,让学生在“拿来就用”的过程中体会函数语言的精准与高效。第二板块“建立适当的函数模型解决实际问题”以“共享单车投放优化”“温室番茄产量预测”等任务为载体,系统呈现建模六环节:提炼变量、作出假设、选择函数、建立方程(不等式)、技术求解、回归检验;教师示范如何用 GeoGebra 或 Excel 进行数据拟合与残差分析,学生则在拆解步骤中领悟“模型不是越复杂越好,而是越合适越好”的建模哲学。第三板块“题型强化训练”围绕交通流量、电商促销、环境降解等跨学科情境,设计“填空—选择—开放”三级梯度练习,鼓励小组合作完成“数据采集—模型选择—误差评估—结果汇报”的完整链条,在反复迭代中固化技能、拓展思维。第四板块“小结及随堂练习”先让学生用思维导图自主梳理“模型选择—求解技术—结果解释—反思改进”四大关键词,教师再补充“过度拟合、灵敏度分析”等高阶视角,随后通过分层随堂练习即时检测:基础层聚焦模型识别与参数求解,提高层则要求依据误差容忍度反向调整函数形式并给出经济或科学建议,确保不同层次学生都能把本节习得的建模策略迁移至新的现实场景,实现知识、能力与责任意识的同步跃升。
这份由二十二张幻灯片构成的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第3课时“一次函数在计费问题中的应用”量身定制。课程以“复习—探究—巩固—小结”四步递进,旨在让学生把“一次函数”从纸上的符号变成生活里的“计费神器”。开篇“知识回顾”用快闪方式唤醒记忆:教师抛出y=kx+b的解析式,学生口答k与b的现实意义,随后屏幕滚动呈现“斜率即单价、截距即起步价”的口诀,为后续应用奠定概念锚点。 进入“新知探究”,课件切换到课本例题“出租车计价”:起步价10元含3公里,之后每公里2元。学生分组填表记录里程x与车费y,发现3公里后“每多1公里,多2元”,变化率恒定,教师顺势引导列式y=2(x−3)+10,化简得y=2x+4,学生亲眼看到“一次函数=计费规则”的诞生过程。紧接着头脑风暴:水费阶梯、快递超重、共享充电宝计时……每组选取一个场景,现场测量数据并写出解析式,派代表登台讲解,台下同学用点赞贴纸投票“最会省钱方案”,课堂瞬间化身“计费创意市集”。 “基础巩固”分层推进:A层直接代入解析式求费用;B层给出预算反推可行驶最大里程,需解一元方程;C层引入“两段计价”真题,要求写出分段函数并画图像,平板实时生成正确率热力图,教师针对红区错误现场“开刀”。 结课用“电梯演讲”——30秒说清一次函数在计费里的作用,弹幕滚成词云;作业分两层:A层完成教材配套练习,B层记录家庭本月电费单,按“阶梯单价”写出一次函数模型并预测下月费用,把课堂所学搬回家。整套课件通过“生活场景—数据提炼—模型建构—即时反馈”的闭环设计,不仅让学生真正理解“一次函数就是单价数量+起步价”的计费本质,更在“算钱、省钱、比方案”的实战中,显著提升模型意识与应用能力,为后续学习分段函数、不等式及优化问题奠定坚实的方法与情感双重基础。
这份共十六张的PPT课件,紧扣北师大版八年级上册第四章《一次函数的应用》第一课时——“确定一次函数的表达式”,以“会看图、会设式、会求参”为核心目标,引导学生在图像与情境中还原解析式,深刻体验数形结合的魅力。课堂仍循五步展开:温故—情境—新知—典例—小结。“温故复习”用快闪方式唤醒记忆:正比例函数y=kx的图像必过原点,一次函数y=kx+b的斜率k定方向、截距b定位置,学生边口述边用手势比斜率,教师顺势板书“两点定一线”,为后续求参埋下伏笔。“情境导入”给出两条已画直线:y=2x+1与y=-x+3,让学生抢答“谁先画到y轴1?谁与x轴交于-3?”在温习图像特征的同时,教师追问:“如果反过来,已知直线经过(0,4)和(2,0),你能写出它的解析式吗?”问题一转,引出本课核心任务——由图或情境确定表达式。“新知探究”分两步走:先特殊后一般。①确定正比例函数:给出图像过点(3,6),学生口算k=2,写出y=2x,归纳“一个非原点即可定k”;②确定一次函数:给出图像与y轴交于-1,且过点(2,3),学生先写y=kx-1,再代入求k=2,归纳“两点或一点加截距可定k、b”。教师随即用GeoGebra动态演示:拖动两点,解析式实时变化,学生眼见“点动式动”,深刻感受坐标与参数的对应关系。“典例巩固”采用“一题三问”:给出一次函数图像与坐标轴两交点,先写解析式,再求x=-1时的函数值,最后判断点(m,m+2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,给出实际情境“租车计费”,要求先设y=kx+b,再利用两组数据求参,实现“情境→图像→解析式”的完整闭环。结课用“思维导图快闪”:两点坐标→列方程组→解k、b→写解析式四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“由图求式”练习,B层拍摄家中电表读数,记录两次时间与示数,写出一次函数模型并预测下次读数,把课堂所学搬回家。整套课件通过“动态演示—即时求参—情境回归”的闭环设计,不仅让学生真正掌握“两点定一线”的求法,更在“看图像→写解析式→回代检验”的反复实践中,深刻体会数形结合思想,为后续学习一次函数与方程、不等式综合应用奠定坚实的模型与思维双重基础。
这份PowerPoint由四个部分构成。第一部分内容是学习目标,学生首先能够结合实验加深对有关知识的认识,其次能够进一步体会元素周期表的重要作用,最后培养一定的比较和归纳能力。第二部分内容是新课导入,这一部分主要展示了元素周期表。第三部分内容是重点知识回顾与突破,该部分首先要求学生讨论交流同主族元素性质的变化规律,其次思考推测元素在周期表中位置变化的重要方法。第四部分内容是实验探究同周期、同主族元素性质的递变。
本套PPT模板在内容上分为什么是人才地图、为什么绘制人才地图、谁来绘制人才地图、怎样绘制人才地图、如何确定人才画像共计五个部分;第一、二部分首先介绍了人才地图的定义、人才地图涉及的信息,以及绘制地图的原因,包括促进招聘决策、优化职位需求等;第三部分介绍了由猎头公司和hr招聘管理部绘制人才地图;第四部分阐述了绘制人才地图的方法,包括锁定目标公司、多渠道搜索等;第五部分介绍了确定人才画像的步骤;
这个PPT主要分为五个部分。PPT的第一个部分向我们介绍的是实施人才培养的内涵和措施。PPT的第二个部分向我们介绍的是什么是大数据,大数据的主要特征和内涵。PPT的第三个部分向我们介绍的是人才画像的内涵和特征。PPT的第四个部分向我们介绍的是什么是未来的组织模式。PPT的第五个部分向我们介绍的是大众客户经理的人才画像,介绍了他们具有哪些考核指标、知识技能和行为能力。
这是一套专为小升初数学第一课时《统计与概率—统计表与统计图》设计的PPT课件,共包含12张幻灯片。本节课的核心目标是通过对实际数据的收集、整理、分析和呈现,培养学生在数据处理、观察分析以及思维逻辑方面的能力,同时提升学生运用统计知识解决实际问题的能力。通过本节课的学习,学生将能够更好地理解和运用统计表与统计图,为小升初考试做好充分准备。课件内容分为三个部分。第一部分是“复习提纲”,以思维导图的形式呈现,帮助学生系统梳理《统计与概率—统计表与统计图》这一节课程的知识点。思维导图清晰地展示了统计表与统计图的定义、分类、特点以及绘制方法等内容,使学生能够快速回顾和总结知识点脉络。这种可视化的方式不仅帮助学生理清思路,还提升了他们的总结归纳能力,为后续学习打下坚实基础。第二部分是“经典案例”。这一部分结合实际考题,对统计表与统计图的考点进行了深入剖析。通过精选的典型例题,教师引导学生分析问题、理解考点,并逐步掌握解题方法。这种以题带点的方式,帮助学生将理论知识与实际问题相结合,加深对知识点的理解和记忆。同时,通过详细的解题过程和思路分析,学生能够更好地掌握解题技巧,提高运用知识点解决实际问题的能力。第三部分是“实战演练”。这一环节通过设计多样化的练习题,让学生在自主练习中巩固所学知识,提升对知识点的运用能力。练习题涵盖了统计表与统计图的各种题型,包括选择题、填空题和解答题,难度适中,既适合基础较弱的学生巩固知识,也能满足基础较好的学生拓展能力的需求。通过实战演练,教师可以及时了解学生对知识点的掌握情况,发现学生在学习过程中存在的问题,并针对性地进行指导和反馈。整套PPT课件设计科学合理,内容丰富实用,教学活动形式多样且富有针对性。通过复习提纲的梳理、经典案例的剖析和实战演练的巩固,学生能够在课堂上全面掌握统计表与统计图的相关知识,提升数据处理和分析能力。这是一套非常实用的教学辅助工具,能够有效提高课堂教学效率,帮助学生在小升初考试中取得优异成绩。
这份演示文稿主要从五个部分对人才地图与画像培训进行具体分析。第一部分是什么是人才地图,介绍了人才地图的定义。第二部分是为什么绘制人才地图,主要从短期和长期两个方面介绍了人才地图的重要性。第三部分是介绍谁来绘制人才地图,包括猎头公司和HR招聘管理部,同时介绍了常见绘制对象职位。第四部分是怎样绘制人才地图,从锁定目标公司、确定人才画像、多渠道搜索、整理信息拼图和吸引配置人才这几个方面进行具体介绍。第五部分是如何确定人才画像。
这份PowerPoint由四个部分构成。第一部分内容是实施人才培养,该模板首先对VUCA的概念进行阐述。第二部分内容是数字时代,这一部分首先介绍了大数字背景,其次是人才画像,最后对未来的组织模式进行简要说明。第三部分内容是人才环境和公司战略,这一部分主要包括确定目标公司、大中客户经理人才画像。第四部分内容是构建新人才画像,包括基本信息、网络关系、专业领域和专业表现。
PPT模板从三个方面介绍了有关急性脑梗死的诊疗进展与病例分析的相关内容。第一部分内容是有关脑梗死疾病的介绍,包括定义、流行病学、常见病因、脑梗死分型、诊断、一般治疗、特殊治疗和其他药物治疗。第二部分内容是病例一,介绍了患者的一般情况、体格检查、辅助检查、处理、溶栓后观察、溶栓后CT表现。第三部分内容是病例二,包括患者的基本情况、各项检查和观察、抗凝聚治疗和康复治疗。
本套PPT课件在内容上分为学习目标、复习导入、考点回顾、巩固练习共计四个部分;第一部分介绍了本节课的学习目标,引入课文接下来的内容;第二部分以问答的方式对本学期的知识点进行了简要的复习;第三部分回顾了上节课的考点内容,包括观察物体、图形的运动等,并展示了例题的解答过程;第四部分针对考点提供了大量的题目并布置了课后作业,巩固学生所学知识。
该演示文稿以幻灯片的形式分五个部分介绍了数字化保护与传承非物质文化遗产的内容,方便我们在使用PowerPoint时更好的了解如何使用数字化来保护和传承非物质文化遗产。PPT模板的第一部分是保护传承之路道阻且长,介绍了我国的对于非遗资源的保护现状。第二部分是数字化的推广与应用,介绍了用数字化推广与应用来保护和传承非物质文化遗产的实际案例。第三部分是有形化可体验的活态艺术,介绍了非遗馆的具体内容。第四部分是让非遗拥抱数字技术,主要介绍了通过不同的数字技术手段让非物质文化遗产与现代科技相结合的内容。第五部分是不能忽视的文化内涵,介绍了在对非物质文化遗产进行数字化推广时不能忽视其文化内涵这一基本要求。
PPT模板内容主要通过PowerPoint软件分四个部分来向我们展开介绍有关于数学质量分析与优化课件的相关内容。PPT模板内容第一部分主要向我们详细的介绍了学科命题的相关特点。第二部分主要向我们详细的讲解了有关于数学命题的主要导向。第三部分主要给我们分析了数学比较典型的一些错题。第四部分主要向我们详细的讲述了我们应该如何去改进和优化数学质量的具体内容。
本套PPT课件专为人教版数学七年级上册立体图形与平面图形单元(第1课时认识立体图形与平面图形)设计,共包含27张幻灯片。课程的主要目标是帮助学生认识和区分常见的立体图形与平面图形,理解立体图形是由平面图形组成的,并学会从不同角度观察立体图形,以此培养学生的空间观念和观察能力。课件内容首先通过展示生活中常见的物品图片,采用提问的方式引入立体图形和平面图形的概念,激发学生的好奇心和学习兴趣。随后,PPT展示了实物模型,引导学生观察这些立体图形的特征,并总结归纳立体图形的名称和特点,加深学生对立体图形的认识。课程的另一个重点是引导学生认识平面图形。PPT呈现了不同图形的图样,通过观察和讨论,引导学生总结平面图形的特点,加强对平面图形的理解。这一环节不仅帮助学生理解平面图形的基本属性,还培养了他们的观察和总结能力。最后,通过例题的练习,帮助学生巩固对平面图形和立体图形的认识,并引导学生对本节课的知识点进行归纳总结。这一过程不仅加强了学生对知识点的记忆,还提高了他们应用知识解决问题的能力。通过这一系列的教学活动,学生不仅能够认识和区分立体图形与平面图形,还能理解立体图形的构成和观察立体图形的不同视角,从而提升空间观念和观察能力。这套PPT课件的设计旨在通过直观的模型展示、互动的观察活动和实际的例题练习,使学生在数学学习中取得实质性的进步,为未来的几何学习打下坚实的基础。通过这样的教学安排,学生将能够更好地理解和应用几何知识,提高解决实际问题的能力。
这个PPT主要分为三个部分。PPT的第一个部分主要是分别关于NBA和CBA的简单介绍。通过对这两个组织的简单了解,首先给大家建立起这两个组织的基本印象。PPT第二个部分主要就是我们的研究成果介绍。关于这两个组织的成立时间、球队的介绍还有相关球员的情况等等。最后一个部分则是为大家简单地介绍一下这两个组织分别存在的一些问题。
PPT全称是PowerPoint,麦克素材网为你提供正比例函数图像与性质PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。