这套二十九页的PPT课件,承接北师大2024版八年级上册第一章《1.1 探索勾股定理》第2课时,以“验证—应用—内化”为主线,引导学生在第一课时的猜想基础上,用拼图、割补、代数运算等多种方法为勾股定理盖上“可信印章”,并首次把定理投入生活沙场,体验“斜边一量,问题破冰”的实用威力。课堂五步推进:直引—温故—验证—题型—总结作业。 开门见山,教师先播放“云梯救援”后续:上次只算出“够得着”,今天却要“最快到达”,斜边长度再度成为焦点,问题抛出即点燃验证欲望;紧接着“温故知新”用30秒快闪复习文字、符号、图形三种表达,确保每位学生都能脱口而出a+b=c。 核心环节“新知探究”让学生化身“几何律师”:先发放两副不同颜色的直角三角形硬卡,四人一组用“割补拼图”将四个直角边正方形重新组合成斜边大正方形,通过面积守恒现场“看见”a+b=c;再切换到GeoGebra,用坐标法计算斜边平方,代数验证同样成立,几何直观与代数严谨双轨并行,定理可信度瞬间拉满。 “题型拓展”分三级:基础层知两边求第三边;提高层用真题测河宽,先画示意图再列方程;拓展层引入“最短路径”问题,把立体表面展开成平面直角三角形,求出最小 ribbon 长度,平板实时统计正确率,教师挑典型错误现场“开刀”。 结课用“一句话接龙”——每人说一个勾股定理的生活场景,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“斜边”实例,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以验证立信、以应用立身、以技术赋能,不仅让学生“相信”定理,更让他们“想用、会用、爱用”定理,为后续勾股逆定理与几何证明奠定坚实的心理与方法双重基础。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这是一套精心设计的人教版数学八年级上册 13.1 节 “三角形的概念” 的 PPT 课件,共包含 23 张幻灯片。本课件旨在帮助学生全面而深入地理解三角形的定义,熟练掌握三角形的表示方法,清晰认识三角形的边、角、顶点等基本构成元素,并能够准确无误地进行识别与表示。同时,通过一系列观察、测量、分类等实践活动,培养学生的合作意识和交流能力,激发他们对数学学习的热情与兴趣。该套 PPT 课件内容丰富、结构清晰,从八个方面展开本节课程的学习。第一部分是情境引入,通过展示一系列具有代表性的含有三角形形状的建筑物图片,引导学生从实际生活中发现三角形的身影,从而初步了解三角形的定义,为后续学习奠定直观基础。第二部分为合作探究,这是课程的核心部分,详细介绍了三角形的定义,引导学生在小组合作中深入认识三角形的边、角、顶点等基本元素,并根据三角形的不同特点进行科学分类,让学生在探究过程中自主构建知识体系。第三部分是典例分析,通过精选的典型例题,帮助学生将理论知识与实际问题相结合,掌握解决三角形相关问题的方法与技巧。第四部分为巩固练习,设计了多种类型的练习题,让学生在练习中巩固所学知识,加深对三角形概念的理解。第五部分为归纳总结,采用表格形式,对三角形的概念进行系统梳理,帮助学生清晰地回顾本节课的重点知识,提高学生归纳总结的能力。第六部分为感受中考,让学生提前了解中考中与三角形概念相关的题型与要求,增强学习的针对性。第七部分为小结梳理,引导学生对本节课的学习内容进行回顾与总结,强化记忆。第八部分为布置作业,通过布置适量的课后作业,让学生在课后进一步巩固所学知识,拓展思维。这套 PPT 课件内容全面,设计合理,能够充分调动学生的学习积极性,帮助学生更好地掌握三角形的概念,为后续的数学学习打下坚实的基础。
这是一套精心设计的 2025 年小升初语文复习课件,专为助力学生攻克概括文章中心思想这一重要考点而打造,共包含 34 张幻灯片。本课件涵盖记叙文、说明文、议论文等多种文体,旨在使学生熟练掌握不同文体概括中心思想的技巧,精准提炼文章核心内容、情感态度与主旨观点,从而显著提升归纳总结能力。课件分为三大板块。第一部分是内容概述,开篇便阐述主旨(中心思想)的定义,为学生清晰勾勒出本节课的学习重点,奠定学习基础,让学生对中心思想这一概念有初步且准确的认知,明白其在整个文章中的核心地位,从而引出本节课主题,引导学生带着明确的目标开启学习之旅。第二部分聚焦于常用的方法。课件通过深入分析文章句子,逐步引导学生学会正确归纳文章的中心。在此基础上,详细介绍了五种实用的方法,即分析题目、抓住文章的重点句、分析文章的内容、结合文章的背景以及把握文章中的形象。这五种方法各有侧重,又相互补充,为学生提供了全面且系统的归纳工具。分析题目,能帮助学生从文章的标题入手,快速捕捉文章可能涉及的核心内容;抓住重点句,往往能直接点明文章的中心思想;分析内容,可以让学生从整体到局部深入理解文章的主旨;结合背景,能使学生更准确地把握作者的写作意图;把握形象,尤其适用于文学性较强的文章,通过对文中人物、事物等形象的分析,挖掘出文章蕴含的深刻主题。第三部分为典例精炼,这是课件的实践环节。通过展示精心挑选的例文,引导学生运用前面所学的方法,亲自尝试归纳文章主旨。这一过程不仅能让学生将理论知识付诸实践,还能在实际操作中巩固对文章概括方法的运用,同时在不断的练习与思考中,进一步提升归纳总结能力,使学生在面对不同类型的语文阅读文章时,能够更加从容地概括出其中心思想,为小升初语文考试中阅读理解部分的答题打下坚实基础。
这是一套专为 2025 年小升初学生精心设计的语文复习课件,主题聚焦于概括文章主要内容,共包含 29 张幻灯片。本课件的核心目标是让学生充分认识到概括文章主要内容在语文学习中的关键作用,系统掌握常见且实用的概括方法,并能够将这些方法熟练运用到实际阅读中,从而显著提升学生的概括能力,进而推动语文阅读理解水平的整体提高。课件内容围绕三个核心板块展开。第一部分聚焦于“概括一件事”。在这一板块中,课件精心选取了典型课文作为示例,引导学生逐步进行概括练习。通过这一过程,学生将深入学习多种实用的概括方法,包括要素串联法、摘句归纳法、文题扩充法以及段意合并法。要素串联法帮助学生从人物、时间、地点、事件等关键要素入手,将它们有机串联起来,形成对事件的完整概述;摘句归纳法则教会学生从文章中精准提取关键句子,以此为核心进行归纳;文题扩充法引导学生以文章题目为基础,进行合理拓展与补充,从而概括出主要内容;段意合并法则是让学生先概括各段大意,再将它们整合在一起,得出文章的总体内容。这些方法的学习与实践,为学生后续更复杂的概括任务奠定了坚实基础。第二部分则是“概括多件事”。这一部分的难度相对更高,但同样以课文为依托,引导学生面对包含多个事件的文章时,该如何进行主要内容的概括。课件通过具体示例,帮助学生学会梳理文章脉络,区分不同事件,把握各事件之间的联系,并最终整合出清晰、准确的文章主要内容。这一板块的训练,旨在培养学生对复杂文本的分析与整合能力,使学生在面对篇幅较长、内容丰富的文章时,也能够迅速抓住核心要点,进行有效的概括。第三部分为“典例精练”。这是课件的实践巩固环节。通过展示一系列精心挑选的文段,课件引导学生运用前面所学的归纳方法,进行主题内容的归纳练习。这一过程不仅是对前面学习内容的复习与巩固,更是对学生归纳方法应用能力的强化训练。通过反复练习,学生能够在实践中不断优化自己的概括技巧,提升概括文章主要内容的能力,从而在语文阅读理解中更加得心应手,准确把握文章主旨,提高答题的准确性和效率。
该课件以幻灯片的形式介绍了从世界看中国的内容,方便教师在使用PowerPoint时更好的介绍中国的人口。PPT课件的第一部分是疆域,介绍了中国的位置、中国的面积、中国的疆界、中国的邻国等内容。第二部分是人口,介绍了中国的人口总数、中国关于人口方面的基本政策、中国人口分布的特点等内容。第三部分是民族,介绍了民族的构成、民族的分布特点以及一些民族的特色节日。
该课件以幻灯片的形式介绍了中国的经济发展的内容,方便教师在使用PowerPoint时更好的介绍我国经济的发展历程。PPT课件的第一部分是交通运输,介绍了交通运输方式的概念、各类交通运输方式的优点和缺点等内容。此外,这一部分还详细的介绍了铁路运输和铁路分布的内容。第二部分是农业,介绍了农业用地的概念、农业部门的概念、因地制宜的发展农业、农业的分布、农业差异、科技兴农等内容。第三部分是工业,介绍了工业及其重要性、工业的分类、工业分布的基本布局、四大工业基地、高新技术产业、高新技术产业的特点等内容。
该课件以幻灯片的形式介绍了我国的自然资源单元复习的内容,方便教师在使用PowerPoint时更好的介绍我国自然资源的基本特征。PPT课件的第一部分是自然资源的基本特征,介绍了地形特征、自然资源相对短缺、保护自然资源的供给措施等内容。第二部分是土地资源,介绍了土地资源的利用类型及其影响、土地资源的分布、合理利用每一寸土地等内容。第三部分是水资源,介绍了水资源的概况特征、水资源的时空分布特征、水资源分布不均的影响、合理利用水资源等内容。
该课件以幻灯片的形式介绍了中国的自然环境的内容,方便教师在使用PowerPoint时更好的分析地形地势。PPT课件的第一部分是地形地势,介绍了我国的地形特征、地形区特征、中国的山脉、中国的地形区等内容。第二部分主要介绍了我国气温规律、我国降水的时空规律等内容。第三部分是河流,介绍了外流河、长江、黄河等方面的内容。第四部分是自然灾害,介绍了干旱、洪涝、台风等自然灾害,并呈现了相关的真题。
这份二十四页的演示文稿,紧扣北师大2024版八年级上册第一章《1.3 勾股定理的应用》,以“把定理搬到现场,让斜边开口说话”为立意,带领学生在真实情境与几何构造之间架起桥梁,完成“会算—会画—会选”的三级跳。课堂依“情境—探究—巩固—总结”四环推进: 开篇“问题引入”抛出装修工人李叔叔的烦心事——一面矩形装饰板需在对角线上精准开孔,手头只有卷尺和笔,如何最快找到对角长度?视频定格,学生脱口而出“用勾股定理”,生活需求瞬间转化为数学任务;教师追问“若板长1米、宽0.6米,对角线多长?”学生口算得出√1.36≈1.17米,第一次体验定理的“秒算”威力。 “新知探究”分三步走:先几何计算——给定直角三角形两边求第三边,强调“谁斜谁写c”;再构造直角——把“断裂的数轴”请上台,学生在网格纸上以单位长度为直角边,斜边自然得到√2、√5等无理数,用圆规在数轴上截取而点,直观看到“无理数也有家”;最后解决实际——把“折叠梯子靠墙面”“游船最短路径”两道真题拍成小动画,学生独立画示意图、标已知、设未知、列方程、求值,教师用颜色覆盖功能对比不同解法,归纳“找直角—定斜边—列平方和”三步解题模板。 “巩固练习”分层推送:基础层直接代入求第三边;提高层在立体展开图中找隐含直角;拓展层用逆定理判定直角后再算面积,平板实时呈现正确率,教师挑错因现场“开刀”。 结课用“一句话接龙”——每人说一个今天见识到的定理新用途,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“对角线”场景,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以真实任务驱动,以数轴构造拓展,以分层训练落地,不仅让学生熟练运用勾股定理解决长度、路径、无理数定位等多类问题,更在“量一量、画一画、比一比”的亲历中,深化数形结合思想,为后续四边形、圆及坐标几何的学习奠定坚实的方法与信心基础。
这份共二十一张幻灯片的PPT课件,专为北师大版八年级上册第四章《4.1 函数》量身定制,以“从生活现象中捕捉变化规律”为切入口,引导学生完成从“感性认识变量”到“抽象定义函数”的第一次跨越。课堂流程简洁而递进:情境导入—探究新知—典例巩固—课堂小结。 开篇“情境导入”用日常短视频串烧:自动扶梯的梯级高度与时间、加油机金额与油量、气温与海拔,三组画面同步滚动,学生边看边记录“谁跟着谁变”,教师追问“一个量确定后,另一个量是否唯一确定?”生活事例瞬间聚焦到“对应”这一核心。 “探究新知”分三步走:先给出函数描述性定义,强调“唯一对应”关键词;再借助箭头图、解析式、表格三种方式呈现同一关系,让学生直观感受函数的多元表征;最后通过“分式型、根式型、零次幂型”三类表达式,归纳求自变量取值范围的“三把钥匙”——分母不为零、偶根非负、零次底非零,每把钥匙配一道即时口答,错误答案瞬间红显,强化记忆。 “典例巩固”采用“一题多变”:同一背景“汽车匀速行驶”分别用表格、解析式、图像给出,学生抢答自变量范围并计算函数值,平板自动生成正确率柱形图,教师针对最低得分点二次讲解;随后推送两道中考真题切片,要求学生判断是否为函数关系并说明理由,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:定义、表示、求范围、求函数值四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层拍摄生活短视频,指出其中的自变量与函数关系并配文说明,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“视觉冲击—多元表征—即时反馈”的闭环设计,不仅让学生真正理解“函数就是对应”,更在“找范围、求值、判断关系”的实战中,为后续学习一次函数、二次函数奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,以北师大版八年级上册第三章《位置与坐标》中“确定位置”为主题,致力于让学生体会“平面定位必须且只需两个数据”这一核心观念,并在多样化方法的比较与操作中感悟“有序对应”的数学思想。整体设计遵循“情境—探究—练习—总结”四段式结构,节奏紧凑、层次分明。课堂伊始,屏幕呈现一张气势恢宏的阅兵照片:方阵整齐、将士林立。教师抛出问题:“如果总指挥要立刻让第三排第五列的士兵出列,他该怎样描述?”学生脱口而出“第三排第五列”,教师顺势追问:“为什么只说一句就能锁定一个人?”生活化的悬念让学生初步体会“行列”这一最朴素的二维定位模型,也自然引出本课主题——平面内确定位置的两个数据。进入“新知探究”环节,课件依次展开三种常用定位法:先以教室座位图为例,认识“行+列”的简洁;再以校园平面图迁移到“方位角+距离”,让学生用量角器和刻度尺现场测定指定目标的位置;最后通过世界地图引入“经度+纬度”,比较不同场景下定位精度与表达方式的差异。每学完一种方法,教师都用“定位三问”小结:需要几个数据?数据顺序能颠倒吗?一个数据能对应几个位置?学生在反复对比中逐步抽象出“两个有序数据↔平面点一一对应”的数学本质。“随堂练习”采用任务驱动:基础层让学生在方格纸上用行列法写出自己座位坐标;提高层给出方位角和距离,要求画出目标点的位置;拓展层则提供经纬度,让学生借助在线地图确定对应城市,并描述其相对于学校的大致方位。平板实时统计正确率,教师依据数据现场讲评,确保错误不过夜。最后的“课堂小结”用思维导图快闪:行列、方位+距离、经纬三线归一于“两个有序数据”核心,学生口头接龙补充易错点;作业设计分层:A层完成教材对应习题,B层观察小区平面图,用两种方法描述自己家相对于大门的坐标,并说明选择理由,将课堂所学迁移到真实生活。整套课件通过“视觉冲击—动手测量—多元比较—即时反馈”的闭环,不仅让学生真正理解“平面定位为何必须两个数据”,更在“说位置、画位置、换位置”的丰富体验中,深刻体会有序性与一一对应的数学思想,为后续平面直角坐标系的引入奠定坚实的经验与概念双重基础。
这套二十六帧的演示文稿,紧扣北师大2024版八年级上册第一章《1.2 一定是直角三角形吗》,以“判定”为核心,引领学生在“正向用定理—逆向找直角”的思维反转中,完成从“知道勾股”到“构造直角”的跃迁。课堂循“情境—温故—探究—题型—总结”五环递进: 开篇情境用“装修师傅如何快速检验墙角是否直角”的生活短片切入,学生眼见师傅手持卷尺测量三边后笃定“这是直角”,悬念顿生——“仅凭三边就能下定论?”问题一抛,求知欲瞬间点燃。 温故知新仅用两分钟快闪:文字、符号、图形三式齐现,学生齐背a+b=c,教师追问“条件是什么?结论又是什么?”为后续条件与结论对调埋下伏笔。 新知探究让学生亲历“实验—猜想—证明”的完整科研流程:先分组用塑料小棒拼出三边长分别为3、4、5的三角形,再用三角板量角,发现“真的是90”;接着发放五组不同的三边数据(5,12,13;8,15,17;4,6,8;7,24,25;5,7,9),各组动手拼图并填写“三边平方关系—最大角目测—是否直角”表格,数据一目了然:满足a+b=c的恰好都是直角三角形,反之则不是,猜想由此诞生;最后教师用几何画板动态演示,以余弦定理一般推导,确认“若平方和相等,则对角为直角”,勾股逆定理正式落户。 题型环节分三级:基础层判断三边能否构成直角三角形;提高层在网格中找点构造直角;拓展层用真题测量河宽,需先依据逆定理判定直角再建模计算,平板实时统计正确率,教师挑典型错误现场“开刀”。 课堂小结用“一句话接龙”——每人说一个逆定理的生活用途,弹幕滚成词云;作业分两层:A层教材习题巩固判定,B层拍摄家中“直角”物体,测量三边验证逆定理并录成15秒短视频,把数学发现带回家。整套课件以生活悬念激发兴趣,以实验数据孕育猜想,以严格证明确认结论,不仅让学生清晰区分“定理”与“逆定理”的条件结论互换,更在“量一量、拼一拼、证一证”的亲历过程中,建立起“数形结合”的直观模型,为后续几何证明与空间构造奠定扎实的方法与信心基础。
本套 PPT 课件是为北师大数学八年级上册第五章二元一次方程组单元复习精心设计的教学资源,共包含 50 张幻灯片。本节课的核心目标是帮助学生系统回顾二元一次方程组的概念、解法及相关应用,掌握二元一次方程组与一次函数的关系,能够根据实际问题列出二元一次方程组并准确求解。通过本节课的学习,学生将激发对数学复习课的兴趣,增强学习自信心,养成良好的学习习惯。PPT 从六个方面展开本节课程的学习。首先,第一部分为单元复习目标,明确本节课的学习重点和方向,让学生在复习过程中有的放矢。接着,第二部分为单元知识图谱,通过思维导图的方式帮助学生梳理本单元的知识点,建立知识网络。这种可视化的方法能够帮助学生清晰地理解各知识点之间的联系,形成系统的知识体系。第三部分为考点串讲,针对本单元的重要考点进行详细讲解,进一步加强学生对知识点的理解。这一部分通过梳理重点内容,帮助学生巩固核心知识,确保学生对每个考点都能做到心中有数。第四部分为题形剖析,通过对经典例题的详细讲解,提高学生对知识点的应用能力。这一环节注重解题方法和技巧的总结,帮助学生在面对不同题型时能够灵活运用所学知识。第五部分为针对训练,通过精选的练习题帮助学生巩固所学知识,检验学习效果。这些练习题涵盖了本单元的重点和难点,能够帮助学生查漏补缺,提升解题能力。最后,第六部分为课堂总结,对本节课的重点内容进行回顾和总结,帮助学生梳理知识脉络,加深记忆。整套 PPT 课件注重知识的系统性和实用性,通过合理的教学设计和丰富的教学资源,为学生提供了一个全面、高效的学习平台。它不仅帮助学生扎实掌握二元一次方程组的核心知识,还通过实际问题的应用展示了数学的实用性和价值,激发了学生的学习兴趣。这种教学设计不仅有助于学生在数学学习中取得更好的成绩,更培养了他们运用数学知识解决实际问题的能力,为学生的未来发展奠定了坚实的基础。
本课件是北师大版八年级数学上册第二章“实数”的单元复习课件,整体结构清晰、逻辑严谨,围绕“考点串讲 + 题型剖析 + 针对训练”这一核心逻辑展开,旨在帮助学生系统复习实数单元内容,突破典型题型,梳理知识体系。课件首先通过“学习内容导航”模块,明确复习的主要内容,包括单元知识树、考点串讲、题型剖析等,使学生对复习内容有清晰的整体认知。在考点串讲部分,核心考点被分为三大板块:平方根与立方根、实数的概念及其分类、实数的混合运算。对于平方根和立方根,课件通过表格形式梳理了两者的定义和性质,如平方根的双重非负性(被开方数和结果均为非负数)以及立方根的符号规律(正数的立方根为正,负数的立方根为负),并对比两者的区别,帮助学生清晰掌握基础知识。在实数部分,课件明确实数由有理数和无理数组成,重点讲解无理数的概念,强调其“无限不循环”这一核心特征,并通过实例帮助学生理解无理数与有理数的区别。对于实数的混合运算,课件强调运算法则和运算顺序,结合具体实例讲解如何正确进行实数的加减乘除、乘方和开方运算,帮助学生掌握实数运算的基本技能。每个考点后都配有“题型剖析”环节,针对不同考点设计典型题型。例如,在平方根考点下,包括“利用非负性求值”“立方根的符号运算”等典型题;实数考点则涵盖“无理数识别”“实数比大小”等题型。这些题型剖析旨在帮助学生掌握各类题目的解题思路和方法。同时,课件还设置了“针对训练”环节,通过专项练习巩固学生对解题方法的理解和应用,强化学生对典型题型的掌握,提升解题能力。整体而言,本课件围绕“梳理知识体系 + 突破典型题型”的目标展开,通过考点串讲、题型剖析和针对训练的有机结合,帮助学生系统复习实数单元内容,提升数学思维和解题能力,为后续学习奠定坚实基础。
该演示文稿以幻灯片的形式分八个部分呈现了《孟子》三章的内容,方便教师在使用PowerPoint时更好的了解孟子的故事。第一部分是学习目标,呈现了该课时的学习目标。第二部分是作者解析,对孟子进行了简要的介绍。第三部分是写作背景,补充说明了这篇文章的写作背景。第四部分是读一读,呈现了文章当中的重点字词。第五部分是词语掌握,解释了文章当中的古今异义词和词类活用词。PPT模板的第六部分是初读感知,主要呈现了文章重点句子的译文。第七部分是精读品味,这一部分的内容以问答题的形式为主。最后一个部分是小节,对课文内容进行了总结,并点明了文章主旨。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关部编版语文八年级《孟子》三章课件的相关内容,共计19张幻灯片。PPT模板内容第一部分主要向我们详细的阐述了本堂课的学习目标。第二部分主要向我们详细的介绍了作者的生平事迹。第三部分主要是有关读一读的内容。第四部分主要向我们讲解有关词语掌握和初读感知的相关内容。最后一部分是小结的相关内容。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关部编版语文《孟子三章》课件的相关内容,共计17张幻灯片。PPT模板内容第一部分主要向我们展示了本堂课的学习目标。第二部分主要向我们详细的介绍了孟子的生平事迹。第三部分主要是本作品的写作背景。第四部分主要是有关作品的生字词。第五部分主要向我们介绍有关初读感知和精读感知的内容。
这份由二十二张幻灯片构成的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第3课时“一次函数在计费问题中的应用”量身定制。课程以“复习—探究—巩固—小结”四步递进,旨在让学生把“一次函数”从纸上的符号变成生活里的“计费神器”。开篇“知识回顾”用快闪方式唤醒记忆:教师抛出y=kx+b的解析式,学生口答k与b的现实意义,随后屏幕滚动呈现“斜率即单价、截距即起步价”的口诀,为后续应用奠定概念锚点。 进入“新知探究”,课件切换到课本例题“出租车计价”:起步价10元含3公里,之后每公里2元。学生分组填表记录里程x与车费y,发现3公里后“每多1公里,多2元”,变化率恒定,教师顺势引导列式y=2(x−3)+10,化简得y=2x+4,学生亲眼看到“一次函数=计费规则”的诞生过程。紧接着头脑风暴:水费阶梯、快递超重、共享充电宝计时……每组选取一个场景,现场测量数据并写出解析式,派代表登台讲解,台下同学用点赞贴纸投票“最会省钱方案”,课堂瞬间化身“计费创意市集”。 “基础巩固”分层推进:A层直接代入解析式求费用;B层给出预算反推可行驶最大里程,需解一元方程;C层引入“两段计价”真题,要求写出分段函数并画图像,平板实时生成正确率热力图,教师针对红区错误现场“开刀”。 结课用“电梯演讲”——30秒说清一次函数在计费里的作用,弹幕滚成词云;作业分两层:A层完成教材配套练习,B层记录家庭本月电费单,按“阶梯单价”写出一次函数模型并预测下月费用,把课堂所学搬回家。整套课件通过“生活场景—数据提炼—模型建构—即时反馈”的闭环设计,不仅让学生真正理解“一次函数就是单价数量+起步价”的计费本质,更在“算钱、省钱、比方案”的实战中,显著提升模型意识与应用能力,为后续学习分段函数、不等式及优化问题奠定坚实的方法与情感双重基础。
这份由二十三张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的图像》第二课时,以“从特殊到一般”为线索,引导学生在正比例函数的基础上进一步探究一次函数y=kx+b的图像特征与性质,实现“会画图、能识图、会用图”的三重目标。课堂流程依旧五步递进:回顾旧知—情境导入—新知探究—典例巩固—课堂小结。开篇“回顾旧知”用动态直线快闪:正比例函数图像过原点,k决定上升或下降,学生边口述边用手势比斜率,教师顺势板书“列表—描点—连线”三步骤,为后续探究奠定方法基础。紧接着“情境导入”抛出共享单车计费场景:起步价1元含前2公里,之后每公里0.5元,学生列出解析式y=0.5x+1,发现“不再过原点”,自然产生“新图像长什么样”的疑问。“新知探究”分三步走:先在同一坐标系内分组画出y=2x、y=2x+3、y=2x-2,观察发现三条直线平行,b值让图像上下平移;再改变k值正负,对比y=2x+1与y=-2x+1,归纳k>0上升、k<0下降、b定交点(0,b)的性质口诀;最后用GeoGebra动态拖动k与b,实时预览直线旋转与平移,学生直观感受“斜率定方向,截距定位置”的数形对应。“典例巩固”采用“一题三问”:给出y=-3x+4,先列表描点验证直线,再求x=-1时的函数值,最后判断点(2,-2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求根据图像写解析式并比较函数值大小,实现“所见即所考”。结课用“思维导图快闪”:k定方向、b定位置、两点定直线三节点依次展开,学生口头接龙补充易错点;作业分两层:A层完成教材配套画图与判断,B层测量家中水龙头放水时间与接水量,验证是否为一次函数并画图像,把课堂发现带回生活。整套课件通过“动态对比—即时观察—口诀归纳”的闭环,不仅让学生真正理解“解析式与图像一一对应”,更在“画一画、看一看、比一比”的亲历中,深刻体会数形结合思想,为后续学习一次函数应用、与方程不等式综合奠定坚实的图像与性质双重基础。
PPT全称是PowerPoint,麦克素材网为你提供毛概第八章PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。