大自然是善良的慈母,同时也是冷酷的屠夫,生命只有一次,我们一定要珍惜。诠释了生命与大自然相互依存的关系。新冠疫情这场突如其来的天灾人祸,就来自于自然界,来自于人类违背了自然规律,人类受到相应的惩罚,在灾难前面,不同的人用生命去拯救生命。这套抗击新冠肺炎疫情启示PPT模板以象征生命和热情的红色基调为主PPT模板素材是一套很好的“生命”主题教育素材。
PPT描述了在春节期间不同于国庆期间人员的流动仍需要注意、春节期间疫情不会有反弹会有散发需要注意、在疫情防控上我们能够做些什么和春节期间疫情防控该怎么做等四个方面。在冬季又一次的来临,在面对疫情时已形成了一套非常严密和有效的措施,但是在早期时会有这社区的监督防控,但是依旧会有着反复散发的疫情发生的可能,大家都要做好自己的防控措施。
PPT模版展示的是开学第一课加强疫情防控共建平发校园,共27张幻灯片,从四个方面展示了防控的知识。第一个方面讲解的是新型冠状病毒是什么,发作的时候有着哪些症状。第二个方面,展示的是在复学的时候,在学校的防护指南和学生的防护指南。第三个方面,展示的是学校开学以后,在疫情预防这一块到底应该怎么做。第四个方面,要如何才能抓好学生疫情后的心理教育。
这个PPT主要分为三个部分。PPT的第一个部分向我们介绍的是新型冠状病毒的变种奥秘克戎的特征,让我们知道病毒的主要感染渠道和致病性原理等。第二个部分向我们介绍的是对于个人防疫知识的基本操作和内容知识。第三个部分向我们介绍在面对疫情肆虐的新环境情况下,个人要有心理准备,做好心理抗疫,相信病毒一定会被克服,我们终将回归正常生活。
PPT模板首先介绍了居家学习与学校教学的不同。首先在于学习环境的改变,其次在于组织方式发生了变化,再次教学关系也从教师主导。成了学生个体主导,但不变的是面对的竞争,承担的责任。第二部分讲解了线上网课的基本要求,包括课前准备、上课的规范和课后应当做好的复习。第三部分讲解了疫情期间提高学习效率的五个好方法。最后介绍了居家学习期间的安全知识。
这个PPT主要分为四个部分。PPT的第一个部分向我们介绍的是五四运动的经过和五四精神的实质等等内容。PPT的第二个部分向我们介绍的是疫情当中,五四精神的重要体现等等内容。PPT的第三个部分向我们介绍的是新青年如何在生活当中继承和发扬五四精神等等内容。PPT的第四个部分向我们介绍的是五四期间疫情防控的主要知识等等内容。
这个PPT主要分为四个部分。PPT的第一个部分向我们介绍的是患病居家休息,吃清淡消化的食物等等。PPT的第二个部分向我们介绍的是常用药物治疗等等内容。PPT的第三个部分向我们介绍的是如何选择食物等等内容。PPT的第四个部分向我们介绍的是家庭环境等等内容,要勤开窗通风,进行环境的消毒,缓解压力,恢复自己日常的生活和爱好。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这是一套党政风格的纪念五四运动101周年战疫情奏响新时代的青春之歌PPT模板,共18张。封面采用卡片设计模式,红色边框,用五星红旗、党徽、和平鸽、奔跑的青年人物剪影等为装饰元素,中间放置红色标题:战疫情奏响新时代的青春之歌弘扬五四精神纪念五四101周年,界面设计简约、大气,爱国。PPT模板内容从三个部分进行阐述,属于教育PPT模板。
这份PPT由五个部分组成。第一部分内容是内容和知识解析,此模板首先展示了平面向量的应用图,其次是对课堂内容进行展示,最后对相关知识点进行分析。第二部分内容是目标及其解析,这一部分主要包括单元目标、达成目标的标志。第三部分内容是学情分析,这一部分一方面分析了学生已有的基础,另一方面是学生基础与目标的差距。第四部分内容是教学设计过程,包括创设情境、总结规律和巩固方法。第五部分内容是教学反思。
这套共计41页的PPT,紧扣人教版九年级物理第17章终极“实战篇”——把欧姆定律从一条公式升级成“串并联万能钥匙”。开篇先抛出一幅“老旧小区晚间用电”航拍:同一条进户线,楼上灯暗、楼下灯亮,瞬间抓住学生注意力;随后动画拆分“一条线”与“多条支路”,让学生直观看到电流“只能走独木桥”与“可分流而行”的本质差异,由此自然生成串联“电流处处相等”、并联“各支电压相等”的口诀,为后续计算埋下伏笔。第二部分“课堂导入”化身侦探剧场:给出两只神秘盒子,A盒串两只灯泡,B盒并三只电阻,外表毫无标记,仅提供一组“总电压3V、总电流0.2A”的线索,请学生用欧姆定律推理内部结构。小组讨论后,教师现场拆盒验证,学生惊呼“算的和真的一模一样”,定律的实用价值瞬间被点燃。进入“探究新知”,课件用“三层递进”攻克难点:①动态电路图叠加数字,拖拽滑片即可看电流、电压实时变化,学生眼见得“串联分压、并联分流”比例关系;②引入“等效电阻”黑箱思想,把四步代数推导浓缩成一张思维导图,R_串=R1+R2、1/R_并=1/R1+1/R2瞬间记忆;③链接中考真题,采用“一题多解”对比——先算总电阻再分电流,或先分电压再算支路,让学生自己评选“最简路径”,培养策略性思维。最后的“课堂练习”设计成闯关游戏:第一关“急救台灯”——灯丝断了如何用现有电阻应急修复;第二关“电动车限速”——在控制器回路中串并电阻实现调速;第三关“家庭布线”——根据电器功率计算导线截面积,防止过热。每关成功即可解锁一张“安全用电勋章”。全课在紧张刺激的竞赛中结束,学生不仅熟记串并联规律,更把欧姆定律内化为解决真实问题的“电学瑞士军刀”。
该课件以幻灯片的形式介绍了欧姆定律在串并联电路中的应用的内容,方便老师在使用PowerPoint时更好的介绍欧姆定律的应用。PPT课件的第一部分介绍了本节课的教学目标。第二部分介绍了等效电路的内容,具体包括等效电路的设计实验、理论依据等内容。第三部分对本节课的内容进行了简要的总结。第四部分呈现了一些巩固学习成果的练习题。第五部分则布置了课后作业。
本套PPT课件为人教版数学八年级下册勾股定理的第二课时——勾股定理在实际生活中的应用——精心打造,共38张幻灯片,致力于帮助学生熟练掌握勾股定理,并将其应用于解决现实世界中的问题。通过本课程,学生将增强数学应用意识,提升分析问题的能力,并深刻体会数学与日常生活的紧密联系。课程伊始,通过回顾上一课时的知识点,巩固学生对勾股定理的记忆和基本运算能力,为引入本课时的主题打下基础。随后,课件通过多个实际应用场景,引导学生学习如何运用勾股定理解决相关问题,包括应用题的解答、几何体表面的最短路径问题、折叠问题中的应用,以及利用勾股定理验证“HL”全等判定法。在这些应用中,学生将学习如何将实际问题抽象成数学模型,通过勾股定理找到解决方案。这一过程不仅锻炼了学生的数学思维,还提高了他们将理论知识应用于实践的能力。课件中的练习部分进一步加深了学生对知识点的理解和运用,通过实际操作,学生能够更好地掌握勾股定理的应用。最后,课件引导学生进行归纳总结,帮助他们建立起知识网络,强化对本节课重点知识的掌握。通过思维导图或总结性的语言,学生能够清晰地回顾和梳理所学内容,加深记忆,为未来的学习打下坚实的基础。整体而言,这套PPT课件的设计旨在通过实际应用的探讨,让学生深刻理解勾股定理的价值和意义,同时培养他们的数学应用能力和问题解决能力。通过这一系列的教学活动,学生将能够在实际问题中灵活运用勾股定理,提高他们的数学素养和逻辑推理能力,为未来的学习和生活提供有力的支持。
PPT模版是关于护理输液pdca应用的知识介绍,共25张幻灯片,从5个方面来进行了解说。第一方面,是关于pdca应用的知识的一个介绍。第二方面,讲述对输液现有状态的一个分析,了解其缺陷。第三方面,讲解对静脉输液安全质量所要采取的一些措施与防护。第四方面,讲解如何在环节中去控制质量,有哪些控制措施。第五方面,讲解如何进行质量控制检查,通过检查结果进行调整。
PPT主要展示了风水基础知识和日常应用的主题内容。PPT的整体色调以蓝色以及灰色为主,将仙鹤、蓝色色块、墨水、八卦图以及与风水有关的图片作为主要装饰物,给人以古色古香之感。PPT的主要内容包括风水基础常识、风水的日常应用以及风水物品这三个部分。旨在通过此次的主题讲解,让听众能够掌握有关风水的基础知识以及日常运用。
PPT模板从四个部分来展开介绍关于云在线智能应用介绍的相关内容。PPT模板的第一个部分介绍了什么叫做云在线智能应用。第二个部分讲解了如何运用智能应用进行云端互联,以达到更加方便快捷地处理工作的目的。第三个部分分析了运用智能应用进行数据共享的方式以及能够进行数据共享的内容。第四个部分讲解了如何运用云在线智能应用进行远程操控。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于销售法则的具体内容。PPT模板内容第一部分主要向我们详细的介绍了FABE法则的定义以及FABE法则的具体内容。第二部分主要向我们详细的解析了FABE法则在销售领域的具体应用。第三部分主要向我们详细的介绍了一些企业FABE法则的应用实例,并向我们讲解了FABE法则的优势和未来竞争潜力。
这是一套“数学第五章三角函数中函数 y=Asin(ωx+ψ)的图像第二课时课件 PPT”模板,该 PPT 共有 56 张幻灯片,整个演示文稿分为三个主要部分。在第一部分,模板通过具体的题目讲解和分析,引导学生逐步掌握函数 y=Asin(ωx+ψ)的图像绘制方法。特别地,模板详细展示了如何使用“五点法”来画出该函数的图像。在文字讲解之后,模板还通过图形步骤的展示,使学生能够更加直观地理解每个步骤,确保学生能够清晰明了地掌握图像绘制的全过程。这种图文结合的方式有助于学生更好地理解和记忆图像绘制的方法。第二部分,模板讲解了函数 y=Asin(ωx+ψ)在匀速圆周运动中的应用。这一部分首先通过具体的例题讲解来引入应用背景,帮助学生理解函数在实际问题中的作用。随后,模板展示了几道相关题目,先引导学生自主完成,再进行探究分析。最后,模板引导学生发表自己的感悟,总结所学知识。这种设计不仅帮助学生理解函数的应用,还通过自主探究和总结,提升了学生的自主学习能力和思维能力。第三部分是题型强化训练环节。这一部分主要围绕求三角函数的解析式相关题型展开练习。通过大量的题目训练,学生可以在实践中巩固所学知识,进一步提升解题能力。这些题目不仅涵盖了基础知识,还通过公式的变化引导学生进行发散思维,帮助学生学会举一反三,从而更好地应对各种题型。整个演示文稿包含了大量的题目,这种设计有利于学生通过题目来探究学习新知。在讲解分析题目的过程中,学生不仅能够巩固所学新知,还能通过题型和公式的多样化变化,提升自己的发散思维能力。这种教学设计符合学生的认知规律,能够有效帮助学生系统地学习函数 y=Asin(ωx+ψ)的图像及其应用,为后续的学习打下坚实的基础。
该课件以幻灯片的形式介绍了牛顿运动定律的应用的内容,方便主讲老师在使用PowerPoint时更好的介绍牛顿运动定律的应用。PPT课件的第一部分介绍了从受力确定运动情况的内容,呈现了几个例子。第二部分介绍了从运动情况确定受力的内容,解析了受力过程。第三部分介绍了传送带模型的相关内容。第四部分介绍了板块模型的相关内容。总的来说,这套PPT课件内容全面,风格简约,适用范围广。
这套人教A版高一数学必修第一册 3.2.2《奇偶性(第2课时)奇偶性的应用》的PPT课件共41页,旨在帮助学生进一步深化对函数奇偶性定义和性质的理解,并掌握利用奇偶性简化计算、证明等式以及解决实际问题的方法。通过本节课的学习,学生将感受到数学在实际生活中的广泛应用,激发对数学学习的兴趣,培养数学思维能力。课件内容围绕四个板块展开:第一部分:根据函数的奇偶性求函数的解析式这一部分通过具体实例,帮助学生熟练掌握利用函数奇偶性求解函数解析式的思路和方法。例如,若已知函数 f(x) 为奇函数,且在某个区间上的部分解析式已知,学生将学习如何利用奇函数的性质 f(−x)=−f(x) 来推导出函数在对称区间上的解析式。通过这种“已知一半求另一半”的方法,学生能够更好地理解奇偶性在函数解析式构建中的作用,同时也锻炼了他们的逻辑推理能力。第二部分:利用函数的奇偶性与单调性比较大小在这一部分,课件通过一系列例题,展示了如何结合函数的奇偶性和单调性来比较函数值的大小。例如,对于一个既具有奇偶性又具有单调性的函数,学生将学习如何利用这些性质来快速判断不同自变量对应的函数值之间的大小关系。这种方法不仅简化了计算过程,还提高了解题的准确性和效率,帮助学生在解决复杂问题时能够迅速找到切入点。第三部分:利用奇偶性与单调性解不等式进一步拓展奇偶性和单调性的应用,这一部分引导学生利用这些性质来解不等式。通过具体的解题步骤和实例分析,学生将掌握如何将奇偶性与单调性相结合,转化为不等式的求解问题。这种方法不仅丰富了学生解不等式的策略,还加深了他们对函数性质综合运用的理解,提升了综合解题能力。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括奇偶性的定义、性质以及在求解析式、比较大小和解不等式中的应用。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从基础到应用、从理论到实践的逐步引导,帮助学生全面掌握函数奇偶性的应用。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
PPT全称是PowerPoint,麦克素材网为你提供疫情中应用高科技的PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。