这个PPT主要分为五个部分。PPT的第一个部分向我们介绍的是股权、股票期权基础知识培训。PPT的第二个部分向我们介绍的是协助客户实现自我发现等等内容。PPT的第三个部分向我们介绍的是在知识结构上了解自己适合哪一个级别的操作等等内容。PPT的第四个部分向我们介绍的是给客户进行合理的投资建议等等内容。PPT的第五个部分向我们介绍的是总结归纳股票期权交易当中存在的相关误区。
这份PPT由七个部分组成。第一部分内容是定价策略概述,此模板首先介绍了定价策略的定义和目的,其次是对定价策略的重要性进行阐述,最后是定价策略的类型与选择。第二部分内容是成本导向定价策略,这一部分主要包括成本加定价法、目标收益定价法、边际成本定价法。第三部分内容是竞争导向定价策略,这一部分一方面介绍了随行就市和密封投标定价法,另一方面是对主动竞争定价法进行介绍。第四部分内容是需求导向定价策略。第五部分内容是定价策略的实施与调整。第六部分内容是定价策略的风险与应对。第七部分内容是案例分析与实践应用。
PPT模板从五个部分来介绍关于酷狗APP定价策略的相关内容。第一部分详细的介绍了酷狗这个软件,它是互联网十分流行的一个听歌软件。第二部分阐述了它的产品特征。第三部分向我们介绍了影响它定价的因素,包括定价目标、市场竞争、产品成本、市场需求、版权制度监管。第四部分讲的是酷狗的定价策略,它通过歌手以及会员等制度等来进行定价。第五部分详细的介绍了酷狗APP软件的发展前景。
本套PPT课件专为人教版数学八年级下册勾股定理的第一课时设计,共31张幻灯片,旨在帮助学生深入理解勾股定理的内涵,掌握其表达方式,并能够灵活运用勾股定理解决实际问题。通过本课程的学习,学生将形成数形结合的思维方式,并在逻辑推理能力上得到显著提升。课程内容分为四个部分,全面而系统地介绍了勾股定理的相关知识。第一部分为探究新知,通过直角三角形的实例,引导学生探索不同三角形之间的关系,自然引出勾股定理的主题。这一部分激发学生的好奇心和探究欲,为后续的学习打下基础。第二部分为新知讲解,通过几何画板软件的直观展示,结合古人赵爽的证法、毕达哥拉斯证法以及加菲尔德的“总统证法”,深入总结勾股定理的几何意义、符号表示和公式变形。这一部分不仅让学生了解勾股定理的历史背景,还通过多种证法增强学生对定理的理解。第三部分为典例分析,通过具体的例题讲解,明确解题过程和步骤,帮助学生加深对勾股定理知识点的理解和应用。这一部分通过实践操作,让学生将理论知识转化为解题技能。第四部分为课堂小结,采用思维导图的形式,帮助学生梳理和总结本节课的知识点。这一部分通过视觉化的工具,让学生对勾股定理有一个清晰的认识,加深记忆。整个课件的设计注重从直观到抽象的过渡,通过历史证法和现代软件的结合,帮助学生全面理解勾股定理。同时,通过丰富的例题和思维导图的总结,提高学生的解题能力和知识整合能力。这样的教学安排不仅有助于学生掌握勾股定理,还能培养他们的数学思维和解决问题的能力,为未来的数学学习奠定坚实的基础。通过这一系列的教学活动,学生将在实际问题中灵活运用勾股定理,提高他们的数学素养和逻辑推理能力。
PPT模板从学习目标、新课导入、知识讲解、随堂训练、课堂小结五个部分展开《勾股定理的逆定理》的教学内容。PPT的第一部分指明了本节课的学习重点和学习难点。第二部分通过回顾勾股定理导入本节课的教学。第三部分通过解决“海天”号的航行方向问题总结得到利用勾股定理的逆定理解决实际问题的三个步骤,并介绍了勾股定理及其逆定理的综合应用。第四部分展示了四道练习题。第五部分从应用和方法两方面入手,总结了本节课所学的知识。
本套PPT课件是为人教版数学八年级下册勾股定理的逆定理的第一课时精心制作的,共29张幻灯片,旨在帮助学生深入理解勾股定理的逆定理,掌握其表达方式,并明确勾股定理与其逆定理之间的区别与联系。通过本课程的学习,学生将能够运用逆定理解决相关问题,提升数学思维和逻辑推理能力。课程伊始,通过回顾勾股定理的基本内容,强化学生对定理的记忆和基本运算能力,为引入本课时的主题做好铺垫。接着,通过画图与测量的数学实验,引导学生探究三角形的三边长满足勾股定理的数量关系,是否能确定这个三角形是直角三角形,并进行验证。这一过程不仅激发了学生的好奇心,还帮助他们直观地理解勾股定理的逆定理:如果一个三角形的三边长满足勾股定理,那么这个三角形是直角三角形。PPT中精心设计了选择、填空、解答三种练习题型,这些练习题旨在帮助学生熟练掌握勾股定理逆定理的理解和运用,通过实际操作加深对知识点的掌握。这些题型覆盖了逆定理的不同应用场景,使学生能够在多样化的问题中灵活运用逆定理。课程的最后部分,采用思维导图的形式,帮助学生梳理和总结本节课的重点内容。思维导图包含了勾股定理逆定理的内容作用、注意事项、勾股数以及互逆命题和互逆定理等关键点,这种视觉化的工具有助于学生整理思路,加深对知识点的理解和记忆。整体而言,这套PPT课件的设计注重理论与实践的结合,通过实验探究和多样化的练习,让学生在实际操作中掌握勾股定理的逆定理。这样的教学安排不仅有助于学生深入理解勾股定理的逆定理,还能提高他们的数学思维和问题解决能力,为未来的数学学习奠定坚实的基础。通过这一系列的教学活动,学生将在实际问题中灵活运用勾股定理的逆定理,提高他们的数学素养和逻辑推理能力,为未来的学习和生活提供有力的支持。
本套PPT课件专为人教版数学八年级下册“勾股定理的逆定理”第2课时设计,共25张幻灯片。其核心目标是助力学生深入理解勾股定理的逆定理,并能熟练运用该定理解决几何图形中与直角三角形判定相关的实际问题,进而培养学生的逻辑推理、数学建模以及从实际问题中抽象出数学模型的能力。课件开篇通过回顾勾股定理及其逆定理的内容,巧妙引出本节课的学习主题,为后续学习奠定基础。课程重点聚焦于勾股定理逆定理的实际应用以及勾股定理与逆定理的综合应用两大板块。在讲解勾股定理逆定理的实际应用时,采用典例分析的方式,引导学生学习如何画出示意图,明确已知条件,进而建构出直角三角形的模型,并清晰掌握应用勾股定理逆定理解决实际问题的步骤,使学生能够逐步攻克实际问题中的难点。而在勾股定理及其逆定理的综合应用部分,通过精心挑选的例题进行深入分析,帮助学生在解决实际问题的过程中,灵活运用所学知识,提升综合分析与解决问题的能力,让学生在实践中不断巩固对勾股定理及其逆定理的理解与运用,为学生今后的数学学习打下坚实的基础。
PowerPoint自从四个部分来展开介绍关于勾股定理这一课时的相关内容。PPT模板的第一个部分对本堂课的学习目标进行了讲解。第二个部分进行了新课导入。第三个部分通过幻灯片对知识点进行了教授,说明了对勾股定理的认识以及验证方法。第四个部分为随堂训练,运用演示文稿中的题目对学生所学的知识点进行了总结巩固,并且进行课堂小结。
这份演示文稿从四个部分来介绍了八年级下册第二单元勾股定理的相关内容,方便大家在使用PowerPoint时迅速找到重点。第一部分内容是课堂导入,包含4张幻灯片,首先列举出此堂课需要掌握的三个知识要点;其次通过数学题引发同学做出相应的思考。第二部分内容是课程讲授,包含7张幻灯片,通过题型和图案来讲授四个知识点,分别包括勾股定理与数轴、坐标系、网格以及几何图形的相应题型。第三部分内容是随堂练习,包含4张幻灯片,展示了与此堂课相应内容的四道练习题来检测学生是否掌握知识。PPT模板的第四部分内容是课堂小结。
PowerPoint从四个部分来展开介绍关于勾股定理的应用的相关内容。PPT模板的第一个部分为学习目标简介。第二个部分运用情景引入的方法进行了导入新课和新课讲授。第三个部分介绍了勾股定理的实际运用,运用题目的形式来对实际问题进行了分析,让学生将实际问题转化为数学问题并且对方法进行了总结。第四个部分为当堂练习,以练习的形式让学生对所学内容进行巩固提升并作了课堂小结和课后作业的布置。
本套PPT课件为人教版数学八年级下册勾股定理的第二课时——勾股定理在实际生活中的应用——精心打造,共38张幻灯片,致力于帮助学生熟练掌握勾股定理,并将其应用于解决现实世界中的问题。通过本课程,学生将增强数学应用意识,提升分析问题的能力,并深刻体会数学与日常生活的紧密联系。课程伊始,通过回顾上一课时的知识点,巩固学生对勾股定理的记忆和基本运算能力,为引入本课时的主题打下基础。随后,课件通过多个实际应用场景,引导学生学习如何运用勾股定理解决相关问题,包括应用题的解答、几何体表面的最短路径问题、折叠问题中的应用,以及利用勾股定理验证“HL”全等判定法。在这些应用中,学生将学习如何将实际问题抽象成数学模型,通过勾股定理找到解决方案。这一过程不仅锻炼了学生的数学思维,还提高了他们将理论知识应用于实践的能力。课件中的练习部分进一步加深了学生对知识点的理解和运用,通过实际操作,学生能够更好地掌握勾股定理的应用。最后,课件引导学生进行归纳总结,帮助他们建立起知识网络,强化对本节课重点知识的掌握。通过思维导图或总结性的语言,学生能够清晰地回顾和梳理所学内容,加深记忆,为未来的学习打下坚实的基础。整体而言,这套PPT课件的设计旨在通过实际应用的探讨,让学生深刻理解勾股定理的价值和意义,同时培养他们的数学应用能力和问题解决能力。通过这一系列的教学活动,学生将能够在实际问题中灵活运用勾股定理,提高他们的数学素养和逻辑推理能力,为未来的学习和生活提供有力的支持。
本套PPT课件专为人教版数学八年级下册勾股定理的第三课时——勾股定理的作图及典型计算——设计,共24张幻灯片,旨在帮助学生利用勾股定理在数轴上精确表示无理数,深化对数轴上点与实数一一对应关系的理解,并熟练掌握勾股定理在多种典型几何图形和实际问题中的应用,从而提升学生的运算能力。课程开始时,通过复习上一课时的知识点,加强学生对勾股定理的记忆和基本运算技能,为引入本课时的主题做好铺垫。接着,通过提问学生数轴上的数与勾股定理之间的联系,激发学生的思考,自然过渡到本课时的核心内容。在PPT的主体部分,详细讲解了三种典型例题:如何在数轴上表示无理数的点、如何在网格中画出长度为无理数的线段、以及如何在网格中计算线段的长度。这些内容不仅涉及理论知识的讲解,还包括实际操作的演示,使学生能够将抽象的数学概念具体化,加深对勾股定理的理解和应用。PPT的最后部分,采用思维导图的方式,引导学生总结和归纳本课时的重点知识。这种视觉化的工具有助于学生整理思路,加深对知识点的理解和记忆,同时也促进了学生对知识的系统化掌握。整体而言,这套PPT课件的设计注重理论与实践的结合,通过具体的作图和计算练习,让学生在实际操作中掌握勾股定理的应用。这样的教学安排不仅有助于学生深入理解勾股定理,还能提高他们的数学思维和问题解决能力,为未来的数学学习奠定坚实的基础。通过这一系列的教学活动,学生将在实际问题中灵活运用勾股定理,提高他们的数学素养和逻辑推理能力,为未来的学习和生活提供有力的支持。
这份二十四页的演示文稿,紧扣北师大2024版八年级上册第一章《1.3 勾股定理的应用》,以“把定理搬到现场,让斜边开口说话”为立意,带领学生在真实情境与几何构造之间架起桥梁,完成“会算—会画—会选”的三级跳。课堂依“情境—探究—巩固—总结”四环推进: 开篇“问题引入”抛出装修工人李叔叔的烦心事——一面矩形装饰板需在对角线上精准开孔,手头只有卷尺和笔,如何最快找到对角长度?视频定格,学生脱口而出“用勾股定理”,生活需求瞬间转化为数学任务;教师追问“若板长1米、宽0.6米,对角线多长?”学生口算得出√1.36≈1.17米,第一次体验定理的“秒算”威力。 “新知探究”分三步走:先几何计算——给定直角三角形两边求第三边,强调“谁斜谁写c”;再构造直角——把“断裂的数轴”请上台,学生在网格纸上以单位长度为直角边,斜边自然得到√2、√5等无理数,用圆规在数轴上截取而点,直观看到“无理数也有家”;最后解决实际——把“折叠梯子靠墙面”“游船最短路径”两道真题拍成小动画,学生独立画示意图、标已知、设未知、列方程、求值,教师用颜色覆盖功能对比不同解法,归纳“找直角—定斜边—列平方和”三步解题模板。 “巩固练习”分层推送:基础层直接代入求第三边;提高层在立体展开图中找隐含直角;拓展层用逆定理判定直角后再算面积,平板实时呈现正确率,教师挑错因现场“开刀”。 结课用“一句话接龙”——每人说一个今天见识到的定理新用途,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“对角线”场景,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以真实任务驱动,以数轴构造拓展,以分层训练落地,不仅让学生熟练运用勾股定理解决长度、路径、无理数定位等多类问题,更在“量一量、画一画、比一比”的亲历中,深化数形结合思想,为后续四边形、圆及坐标几何的学习奠定坚实的方法与信心基础。
这套共四十三页的复习课件,专为北师大2024版八年级上册第一章《勾股定理》收官而制。设计者以“把散落的珍珠串成项链”为理念,用六大板块层层递进,帮学生在两节课内迅速搭起知识框架、扫清易错盲点、提升实战信心。开篇先亮“目标雷达图”,明确三大重点——定理结构、逆定理判定、实际应用,两大难点——斜边辨认、无理数在数轴上的定位,学生抬头便知复习航线。随后展开“知识图谱”思维导图:直角三角形、三边关系、平方和、逆定理、数轴构造、生活应用六条分支彩色呈现,节点留空,学生用电子笔现场补充典型例题或警句,个人框架与班级智慧瞬间同步。第三环节“考点串讲”用一张六列表格横向对比文字语言、符号语言、图示、变式、常见错因、生活场景,教师只当“报幕员”,让学生纵向观察:无论图形怎样旋转,只要出现“直角+两边平方和”即联想定理,出现“三边平方和相等”即联想逆定理,形成条件反射。第四环节“题型剖析”化身“错题医院”,把月考失分率最高的五类题型制成电子病历:求斜边忘开方、判定直角用错边、立体展开图找不到直角、数轴描点舍近求远、实际问题示意图画歪,学生分组扮演“小医生”完成诊断—开方—预防三栏,再派代表登台讲解,台下同学用弹幕投票“最佳处方”,在互评互改中完成深度二次学习。第五环节“针对训练”分层推送:A层在线判断快速抢答,系统即时红绿反馈;B层给出“折叠梯子靠墙”实景,要求先画示意图再算安全高度;C层选用近年中考真题,立体展开后求最短路径,鼓励用两种方法并列解答,平板实时生成“知识掌握度”折线,教师依据数据精准面对面辅导。最后“课堂总结”用“电梯演讲”模式——每人30秒说清自己最大的收获与仍存困惑,弹幕滚动生成词云,教师提炼共性问题录制三分钟微课,确保复习闭环延伸到家庭。整套课件通过“目标可视—网络建构—考点透视—错因剖析—精准训练—多元总结”的六步闭环,不仅让学生系统掌握勾股定理及其逆定理的结构、判定与应用,更在合作、分享、碰撞中培养严谨习惯、提升模型意识,为后续四边形、圆及坐标几何的证明与计算奠定扎实的方法、思维与情感三重根基。
这套共二十七页的PPT课件,紧扣北师大2024版八年级上册第一章《1.1 探索勾股定理》第1课时,以“火灾救援”情境破题,用“数格子”探究奠基,借“表格归纳”升华,带领学生经历一次“观察—猜想—验证—初用”的完整探索之旅。课堂五步递进:情境引入—温故知新—新知探究—题型拓展—总结作业。 开篇播放“高楼救火”微视频:云梯必须靠到着火点正下方,楼高、梯长、街宽构成神秘三角形,教师一句“梯长够吗?”把生命安全问题抛给学生,瞬间点燃探究热情;接着用“温故知新”快闪复习等腰三角形底边与高、腰长的数量关系,为即将出场的等腰直角三角形埋下类比伏笔。 核心环节“新知探究”让学生回到方格纸战场:先给等腰直角三角形三边蒙面,只露顶点坐标,学生用“数格子”求斜边上正方形面积,发现两个小正方形面积之和恰好等于大正方形,填表、描点、观察比值,猜想“两直角边平方和等于斜边平方”;再换三组非等腰直角三角形验证,数据依旧成立,猜想升级为定理。教师适时板书符号表达a+b=c,并示范用定理回算云梯问题,完成“生活—数学—再回生活”的闭环。 “题型拓展”分三级:基础层算直角斜边;提高层知斜边求直角边;拓展层用真题测量河宽,学生独立画示意图、列方程、求值,平板实时呈现正确率,教师挑错因现场“开方”。 结课用“电梯演讲”——30秒说清勾股定理内容及用途,词云自动生成;作业分两层:A层教材习题巩固计算,B层拍摄身边“直角”照片,测量后验证定理,把探索延伸到生活。整套课件以情境引路、以活动赋能、以技术反馈,不仅让学生亲历定理诞生,更在“我能用数学保安全”的成就感中,点燃继续钻研几何的浓厚兴趣。
这套二十九页的PPT课件,承接北师大2024版八年级上册第一章《1.1 探索勾股定理》第2课时,以“验证—应用—内化”为主线,引导学生在第一课时的猜想基础上,用拼图、割补、代数运算等多种方法为勾股定理盖上“可信印章”,并首次把定理投入生活沙场,体验“斜边一量,问题破冰”的实用威力。课堂五步推进:直引—温故—验证—题型—总结作业。 开门见山,教师先播放“云梯救援”后续:上次只算出“够得着”,今天却要“最快到达”,斜边长度再度成为焦点,问题抛出即点燃验证欲望;紧接着“温故知新”用30秒快闪复习文字、符号、图形三种表达,确保每位学生都能脱口而出a+b=c。 核心环节“新知探究”让学生化身“几何律师”:先发放两副不同颜色的直角三角形硬卡,四人一组用“割补拼图”将四个直角边正方形重新组合成斜边大正方形,通过面积守恒现场“看见”a+b=c;再切换到GeoGebra,用坐标法计算斜边平方,代数验证同样成立,几何直观与代数严谨双轨并行,定理可信度瞬间拉满。 “题型拓展”分三级:基础层知两边求第三边;提高层用真题测河宽,先画示意图再列方程;拓展层引入“最短路径”问题,把立体表面展开成平面直角三角形,求出最小 ribbon 长度,平板实时统计正确率,教师挑典型错误现场“开刀”。 结课用“一句话接龙”——每人说一个勾股定理的生活场景,弹幕滚成词云;作业分两层:A层教材习题夯实计算,B层拍摄家中“斜边”实例,测量验证并录成15秒短视频,把课堂成果带回生活。整套课件以验证立信、以应用立身、以技术赋能,不仅让学生“相信”定理,更让他们“想用、会用、爱用”定理,为后续勾股逆定理与几何证明奠定坚实的心理与方法双重基础。
本套PPT课件在内容上分为新知探究、例题解析、巩固练习共计三个部分;第一部分针对勾股定理的具体内容和要点提示进行了知识梳理;第二部分进行了三角形勾股定理的逆定理的实验操作计算,推导了勾股定理的逆定理,并展示了例题的计算过程;第三部分针对考点提供了大量的计算题,巩固学生所学知识,让学生自行分析做题方法,并从中得出相应的结论和总结解题规律;
PowerPoint从四个部分来展开介绍关于勾股定理的逆定理这一课时的相关内容。PPT模板的第一个部分介绍了本堂课的学习目标。第二个部分为知识讲解,运用幻灯片对勾股定理的逆定理的应用进行了分析说明。 第三各部分为随堂训练,通过演示文稿中的实际问题,加深学生对新知的理解,达到巩固所学知识点的目的。第四个部分进行了课堂小结,对今天所学的勾股定理的逆定理的应用进行了回顾。
这套二十六帧的演示文稿,紧扣北师大2024版八年级上册第一章《1.2 一定是直角三角形吗》,以“判定”为核心,引领学生在“正向用定理—逆向找直角”的思维反转中,完成从“知道勾股”到“构造直角”的跃迁。课堂循“情境—温故—探究—题型—总结”五环递进: 开篇情境用“装修师傅如何快速检验墙角是否直角”的生活短片切入,学生眼见师傅手持卷尺测量三边后笃定“这是直角”,悬念顿生——“仅凭三边就能下定论?”问题一抛,求知欲瞬间点燃。 温故知新仅用两分钟快闪:文字、符号、图形三式齐现,学生齐背a+b=c,教师追问“条件是什么?结论又是什么?”为后续条件与结论对调埋下伏笔。 新知探究让学生亲历“实验—猜想—证明”的完整科研流程:先分组用塑料小棒拼出三边长分别为3、4、5的三角形,再用三角板量角,发现“真的是90”;接着发放五组不同的三边数据(5,12,13;8,15,17;4,6,8;7,24,25;5,7,9),各组动手拼图并填写“三边平方关系—最大角目测—是否直角”表格,数据一目了然:满足a+b=c的恰好都是直角三角形,反之则不是,猜想由此诞生;最后教师用几何画板动态演示,以余弦定理一般推导,确认“若平方和相等,则对角为直角”,勾股逆定理正式落户。 题型环节分三级:基础层判断三边能否构成直角三角形;提高层在网格中找点构造直角;拓展层用真题测量河宽,需先依据逆定理判定直角再建模计算,平板实时统计正确率,教师挑典型错误现场“开刀”。 课堂小结用“一句话接龙”——每人说一个逆定理的生活用途,弹幕滚成词云;作业分两层:A层教材习题巩固判定,B层拍摄家中“直角”物体,测量三边验证逆定理并录成15秒短视频,把数学发现带回家。整套课件以生活悬念激发兴趣,以实验数据孕育猜想,以严格证明确认结论,不仅让学生清晰区分“定理”与“逆定理”的条件结论互换,更在“量一量、拼一拼、证一证”的亲历过程中,建立起“数形结合”的直观模型,为后续几何证明与空间构造奠定扎实的方法与信心基础。
这篇PPT展示了邮票以及集邮相关的知识。PPT模板以红色和白色作为主色调,并且别出心裁地用白色锯齿状的边框,模拟邮票的样子,将正文内容置于邮票之中。在配图方面也多以信封、邮票、邮戳、信箱等邮票相关的元素。使得读者在阅读该PPT模板的时候,能够自主地带入邮票学习的氛围当中。ppt模板以黑白二色字体为主,通过对该PPT的学习,能够帮助我们更好的掌握邮票相关知识,做一个集邮小能手。
PPT全称是PowerPoint,麦克素材网为你提供股票定价PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。