这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第三课时,聚焦“两个一次函数图像的交点”这一核心,引领学生从“看图说话”走向“借图解题”,体会交点背后的实际意义。课堂流程简洁而递进:情境导入—新知探究—典例变式—课堂小结。“情境导入”抛出学生熟悉的“租车比价”场景:A公司收固定起步费加每公里租金,B公司免起步费但单价略高。屏幕同时呈现两家公司的路程—费用折线图,教师提问:“什么时候两家价钱相同?哪段路程选哪家更划算?”生活化悬念瞬间点燃探究欲望,学生直观发现“两条线交叉”即为关键节点,自然引出本课核心——两个一次函数图像交点的实际含义。“新知探究”分三步走:①读图——用GeoGebra动态显示y=k₁x+b₁与y=k₂x+b₂的交点,学生眼见横坐标x₀使两函数值相等;②释义——教师引导得出“交点横坐标即两方案费用相等时的路程,纵坐标即此时的共同费用”,把抽象的‘解方程组’转化为可视的‘两线相遇’;③决策——拖动x轴上的动点,左侧y₁y₂、右侧y₁y₂,学生立刻体会“哪条线低就选哪家”的优化思想,实现“交点分界、左右比价”的建模思路。“典例变式”采用“一景三问”:给出“水费阶梯计价”双段折线图,先求交点坐标,再解释交点含义,最后设计用水量使费用最低,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求用双图像法与代数法并列求“两车队运费相等”的临界点,实现“情境→图像→方程→决策”的完整闭环。结课用“思维导图快闪”:两直线→交点→横坐标相等→实际意义四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“读交点”练习,B层观察家用水电费账单,绘制两段计价直线并求交点,说明如何用水用电最省钱,把课堂所学搬回家。整套课件通过“动态交点—即时释义—左右比价”的闭环设计,不仅让学生真正掌握“两线交点=方程组的解=现实决策临界点”的核心思想,更在“看图→找点→释义→择优”的反复实践中,深刻体会数形结合的魅力,为后续学习不等式组、线性规划奠定坚实的模型与思维双重基础。
这套由二十二张幻灯片构成的教学课件,专为北师大版八年级上册第四章《一次函数的图像》第一课时“正比例函数的图像与性质”量身定制,旨在让学生经历“表达式→表格→描点→连线→观察→归纳”的完整过程,真正理解“k值决定直线姿势,原点必过”的图像本质。课堂依旧四段推进:情境导入—新知探究—典例巩固—课堂小结。开篇“情境导入”给出汽车仪表盘特写:指针定格在80 km/h,屏幕动态显示行驶时间t与路程s同步增加。教师提问:“除了列表、写式,还能怎样一眼看出s=80t的变化趋势?”学生脱口而出“画图像”,生活经验瞬间对接“图像法”必要性,引出本节核心任务。“新知探究”分三步走:先回顾函数图像定义——“所有有序点(x,y)的集合”;随后聚焦正比例y=kx,学生分组填表、描点、连线,发现无论k为正为负,图像都是一条经过原点的直线;接着用GeoGebra动态拖动k值,观察直线旋转,归纳出“k0,过一、三象限,上升;k0,过二、四象限,下降;|k|越大,直线越陡”的性质口诀,实现“数形同步”。“典例巩固”采用“一题三问”:给出y=2x,先列表描点验证直线,再求x=1.5时的函数值,最后判断点(-2,-4)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,要求根据图像写解析式并比较k值大小,实现“所见即所考”。结课用“思维导图快闪”:列表→描点→连线→观察→归纳五节点依次展开,学生口头接龙补充易错点;作业分两层:A层完成教材配套描点画图,B层拍摄家中水龙头流水视频,记录时间与接水量,验证是否为正比例并画图像,把课堂发现带回家。整套课件通过“动态生成—即时观察—对比归纳”的闭环,不仅让学生真正理解“解析式与图像一一对应”,更在“画一画、看一看、比一比”的亲历中,深刻体会数形结合思想,为后续学习一次函数平移、斜截式及实际应用奠定坚实的图像与性质双重基础。
这份共二十一张幻灯片的PPT课件,专为北师大版八年级上册第四章《4.1 函数》量身定制,以“从生活现象中捕捉变化规律”为切入口,引导学生完成从“感性认识变量”到“抽象定义函数”的第一次跨越。课堂流程简洁而递进:情境导入—探究新知—典例巩固—课堂小结。 开篇“情境导入”用日常短视频串烧:自动扶梯的梯级高度与时间、加油机金额与油量、气温与海拔,三组画面同步滚动,学生边看边记录“谁跟着谁变”,教师追问“一个量确定后,另一个量是否唯一确定?”生活事例瞬间聚焦到“对应”这一核心。 “探究新知”分三步走:先给出函数描述性定义,强调“唯一对应”关键词;再借助箭头图、解析式、表格三种方式呈现同一关系,让学生直观感受函数的多元表征;最后通过“分式型、根式型、零次幂型”三类表达式,归纳求自变量取值范围的“三把钥匙”——分母不为零、偶根非负、零次底非零,每把钥匙配一道即时口答,错误答案瞬间红显,强化记忆。 “典例巩固”采用“一题多变”:同一背景“汽车匀速行驶”分别用表格、解析式、图像给出,学生抢答自变量范围并计算函数值,平板自动生成正确率柱形图,教师针对最低得分点二次讲解;随后推送两道中考真题切片,要求学生判断是否为函数关系并说明理由,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:定义、表示、求范围、求函数值四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层拍摄生活短视频,指出其中的自变量与函数关系并配文说明,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“视觉冲击—多元表征—即时反馈”的闭环设计,不仅让学生真正理解“函数就是对应”,更在“找范围、求值、判断关系”的实战中,为后续学习一次函数、二次函数奠定坚实的概念与技能双重根基。
本套 PPT 课件是为北师大数学八年级上册 5.4“二元一次方程组与一次函数(第 1 课时)”设计的教学资源,共包含 21 张幻灯片。本节课的核心目标是帮助学生深入理解二元一次方程组与一次函数之间的内在联系,掌握将二元一次方程组转化为一次函数图像问题的方法,从而提高学生运用数形结合思想解决数学问题的能力。通过本节课的学习,学生将在探索过程中体会数学知识之间的紧密联系,培养严谨的数学学习态度和良好的学习习惯。在内容设计上,PPT 首先通过情境导入,引出本节课的学习主题。情境导入环节通过生动的实例或实际问题,激发学生的学习兴趣,引导他们思考二元一次方程组与一次函数之间的关系,为后续的探究活动奠定基础。接着,PPT 通过具体问题带领学生共同探究二元一次方程与一次函数的图像关系。通过逐步分析和演示,学生能够清晰地看到二元一次方程的图像是一条直线,而两个一次函数的图像交点则对应着二元一次方程组的解。此外,PPT 还深入探讨了二元一次方程组与对应平行直线的关系,帮助学生理解当两条直线平行时,方程组无解的几何意义。通过这种直观的图像分析,学生能够更好地理解抽象的数学概念,提升数形结合的思维能力。在教学方法上,PPT 通过典例分析,针对具体问题进行详细剖析。每个例题都设计了详细的解题思路和步骤,引导学生学会如何将二元一次方程组转化为一次函数图像问题,并通过图像求解方程组。这种以问题为导向的教学方式,不仅能够帮助学生掌握具体的解题方法,还能培养他们的逻辑思维能力和分析问题的能力。为了巩固学生对知识点的理解和应用,PPT 设计了巩固练习和真题感知两个环节。巩固练习环节通过多样化的题目设计,帮助学生进一步熟悉二元一次方程组与一次函数之间的关系,强化对数形结合思想的理解和应用。真题感知环节则通过引入历年真题,让学生提前感受考试题型,增强应试能力。通过这两个环节的练习,学生不仅能够加深对知识的理解,还能在实践中提升自己的数学素养,为后续学习打下坚实的基础。总之,本套 PPT 课件通过系统的内容设计和丰富的教学方法,帮助学生全面理解二元一次方程组与一次函数之间的关系,掌握运用数形结合思想解决数学问题的方法。通过图像与方程的结合,学生能够更好地理解数学知识之间的内在联系,提升数学思维能力。这种以数形结合为核心的教学方式,能够有效激发学生的学习兴趣,培养他们的严谨态度和良好习惯,为学生今后的数学学习和思维发展提供有力支持。
这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是知识回顾,包括背景知识。PPT的第二个部分向我们介绍的是探究新知等等内容。PPT的第三个部分向我们介绍的是数形结合等等内容。PPT的第四个部分向我们介绍的是分析归纳等等内容。PPT的第五个部分向我们介绍的是总结归纳。PPT的第六个部分向我们介绍的是针对性的练习,归纳总结。
PPT模板从三个部分来展开介绍关于《幂函数》的教学内容。PPT模板的第一部分介绍了引导学生绘制出五类函数的图像,并通过表格的形式总结了五类函数的定义域、值域、奇偶性、单调性、公共点等知识。第二部分分析了幂函数在第一象限的性质,继而总结出幂函数的一般性质。第三部分展示了有关幂函数的相关练习题目来辅助学生巩固所学的知识。
这个PPT主要分为四个部分。PPT的第一个部分向我们介绍的是对数函数的定义,PPT的第二个部分向我们介绍的是如何利用对衬性画图,第三个部分向我们介绍的是图像的特征和函数性质。PPT的第四个部分向我们介绍的是课堂小结,讲述了对数函数是指数函数的反函数,对数函数的性质、定义域、阈值、特殊点、单调性以及分布情况等等内容。
这是一套专为人教A版高一数学必修第一册第五章“三角函数”中“5.4.1正弦函数、余弦函数的图象”设计的PPT课件模板,总页数为49页,内容系统地分为四个主要部分,旨在帮助学生全面而深入地理解和掌握相关知识。在第一部分“正弦函数、余弦函数图象”中,详细介绍了正弦函数和余弦函数图象的基本概念。通过单位圆的直观展示,引导学生逐步掌握如何绘制这两种函数的图象,并深入阐述了函数的周期性特点,为学生后续学习函数的性质和应用奠定了基础。第二部分聚焦于“五点(画图)法”这一实用的作图方法。课件不仅详细讲解了这种方法的具体步骤和关键技巧,还通过典型例题的逐步演示,帮助学生学会如何绘制函数的简图,并引导学生分析图象的特征,使学生能够更加直观地理解正弦函数和余弦函数的图象形态。第三部分“题型强化训练”内容丰富多样,涵盖了用五点法作图、图象变换、解三角方程与不等式等多个重点题型。针对每一类问题,课件都提供了详细的示例解析和解题策略总结,旨在通过多样化的练习,提升学生的综合应用能力,帮助学生更好地掌握和运用所学知识。最后的“小结及随堂练习”部分,对全课的知识要点和方法进行了系统的梳理和归纳。通过多种练习题的设计,为学生提供了自我检测和巩固理解的机会,帮助学生进一步加深对正弦函数和余弦函数图象绘制方法的理解,并能够灵活运用于实际问题的解决中。整个PPT课件结构层次清晰,逻辑严谨,内容丰富实用,非常适合用于课堂教学,能够有效地帮助学生扎实掌握正弦函数与余弦函数图象的绘制方法,并将其灵活运用到实际问题的解决中,从而提升学生的数学素养和解题能力。
PPT课件从五个方面介绍了有关部编版七年级数学下册一元一次不等式课件的相关内容。第一部分内容是学习目标介绍。第二部分内容是前置学习,以三个选择题的方式回顾上堂课所讲的学习内容。第三部分内容是合作探究,三个探究点以提问和习题的方式,帮助学生更好地掌握课堂内容。第四部分内容是强化训练,帮助学生回顾课程内容。第五部分内容是随堂检测。
PPT主要展示了初中语文高一《记梁任公先生的一次演讲》教育教学的主题内容。PPT的整体色调以灰色以及白色为主,将竹叶、云朵、山脉以及《记梁任公先生的一次演讲》这篇文章有关的图片作为主要装饰物,给人以清新、清冷之感。PPT的主要内容包括作者简介思考、梁任公演讲特点、梁的形象如何在文中得到完美展示的以及文章的艺术表达特征等几个部分的内容。旨在通过此次学习,让学生了解这篇文章所表达的内容。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版九年级数学课件的相关内容。PPT模板内容第一部分主要是有关于函数的定义。第二部分主要向同学们详细的讲解了二次函数的概念。第三部分主要向同学们详细的讲解了有关于二次函数的相关要求。第四部分主要向同学们详细的讲解了有关于二次函数的形式和二次函数识别的内容。最后一部分是有关于利用二次函数的定义求字母的值的相关内容。
这套人教A版高一数学必修第一册 3.3《幂函数》的PPT课件共48页,旨在帮助学生深入理解幂函数的定义,掌握其图像和性质,并能够根据这些性质解决简单问题。通过具体实例和自主探究,学生将逐步建立起对幂函数的直观认识和系统理解。课件内容围绕四个板块展开:第一部分:幂函数的概念这一部分首先复习回顾了函数的基本性质,为引入幂函数做好铺垫。接着,通过分析具体实例,如 f(x)=x 2、f(x)=x 3、f(x)=x −1等,帮助学生理解幂函数的定义,即形如 f(x)=x α的函数,其中 α 是常数。为了加深学生对幂函数图像特征及其性质的理解,课件以表格形式详细总结了五种常见幂函数(α=−1,0,1,2,3)的图像和性质,包括定义域、值域、奇偶性、单调性等。通过这种系统化的总结,学生能够清晰地看到不同幂函数之间的相似性和差异性。第二部分:幂函数的图像与性质在这一部分,课件进一步深入探讨幂函数的图像与性质。通过动态演示和图像分析,学生可以直观地看到幂函数在不同指数 α 下的图像变化。例如,当 α0 时,函数图像通过原点且在第一象限单调递增;当 α0 时,函数图像在第一象限单调递减且有垂直渐近线。课件还通过表格形式总结了五种常见幂函数的图像特征和性质,帮助学生系统地掌握这些函数的行为规律。通过具体的图像和表格,学生能够更好地理解幂函数的性质,并能够在实际问题中灵活运用。第三部分:题型强化训练为了巩固学生对幂函数的理解和应用能力,这一部分提供了丰富的练习题。这些题目涵盖了不同类型的幂函数,包括求定义域、值域、判断奇偶性、比较大小等。通过这些练习,学生能够熟练掌握幂函数的性质,并能够运用这些性质解决实际问题。每道题目都配有详细的解题步骤和解析,帮助学生理解每一步的逻辑和方法。通过重复练习,学生能够提升解题速度和准确性,增强对幂函数性质的掌握。第四部分:小结及随堂练习最后,通过思维导图的方式,课件帮助学生系统回顾本节课的关键知识点,包括幂函数的定义、图像特征和性质。随堂练习部分提供了即时反馈的机会,让学生在课堂上就能检验自己的学习效果,及时发现并纠正错误。通过梳理本节课的知识点,学生能够构建完整的知识体系,为后续学习打下坚实的基础。整套课件设计科学,内容丰富,通过从直观到抽象、从定义到应用的逐步引导,帮助学生全面掌握幂函数的概念和性质。通过具体的实例和自主探究,学生不仅能够提升数学思维能力,还能增强解决实际问题的能力,感受到数学在实际生活中的广泛应用。
PPT模板从三个部分来展开介绍关于高中数学人教版高一必修《对数函数》的教学内容。PPT模板的第一部分阐述了对数函数的定义,并展示了相关对数函数的范例,同时提出相关问题来引导学生思考。第二部分引导学生利用指数函数和对数函数的对称性来画出图像,并详细地分析了它们的图像特征和函数性质。第三部分总结了本节课的重点内容。
PPT模板通过采用知识的讲解结合例题的练习的方法帮助学生掌握《函数模型及应用》的基础知识。PPT模板首先是函数相关知识的简要阐述,让学生理解什么是函数的零点以及函数零点的判定。然后通过列表的方式直观展示出二次函数的图像与零点的关系,引发深入思考。最后介绍二分法的定义和用二分法求函数零点近似值的步骤,步骤讲解非常详细到位。在教学的最后让学生基于获取的知识来对不同提醒进行分析与解答从而进行知识的巩固与检验。
PPT模板从三个部分来展开介绍关于高中数学人教版高一必修《幂函数》的相关教学内容。PPT模板的第一部分引导学生在同一个图中画出四个函数的图像,并通过图表的形式总结了五个函数的定义域、值域、奇偶性、单调性以及公共点等相关知识。第二部分总结了幂函数于不同的前提条件下在第一象限的性质,继而总结出一般幂函数的性质。第三部分展示了有关幂函数的相关练习题目。
这个PPT主要分为六个部分。PPT的第一个部分向我们介绍的是新课导入。PPT的第二个部分向我们介绍的是想一想,观察以下的函数等等内容。PPT的第三个部分向我们介绍的是旧知回顾,应用新知等等内容。PPT的第四个部分向我们介绍的是看图理解等等内容。PPT的第五个部分向我们介绍的是试一试,应用新知解题。PPT的第六个部分向我们介绍的是课堂总结。
PPT模板从四个部分来展开介绍关于《函数》的教学内容。PPT模板的第一部分采用复习的方式来进行导入,并回顾了上节课的重点内容。第二部分创设了三个问题情境,并引导学生思考三个式子的共同特征,从而总结归纳出了函数的概念。第三部分展示了与函数相关的练习题目来辅助学生巩固本节课所学的知识。第四部分总结了本节课的重点知识。
该演示文稿以幻灯片的形式分四个部分介绍了excel公式和函数的使用,方便我们在使用PowerPoint时更好的了解常用的公式和函数。PPT模板的第一部分是使用的公式和函数,介绍了一些常用的公式和函数。第二部分是公式中的引用设置,介绍了引用单元格或单元格区域、相对引用、绝对引用、混合引用等内容。第三部分是公式中的错误与审核,介绍了追踪导致公式错误的单元格、追踪产生循环引用的单元格等内容。第四部分是数组公式及其应用,介绍了数组公式的建立方法和使用规则。
以下是一套专为八年级数学下册19.1.1《变量与函数》(第2课时 函数)精心打造的PPT课件模板介绍,该模板共34页,结构清晰,内容丰富,涵盖八个板块,助力高效教学。课件伊始,明确呈现学习目标,让学生对本节课的学习方向和重点一目了然,为后续学习提供指引。紧接着进入“回顾旧知”部分,巧妙地与上节课内容相衔接,通过复习上节课的关键知识点,唤醒学生已有的知识储备,激活学生的学习思维,为新知识的学习奠定坚实基础,使学生能够更好地在已有知识体系上进行拓展和延伸。“新知讲解”板块是本节课的核心部分之一,它在回顾旧知的基础上进行延伸拓展。通过对上一部分相关题目的深入剖析,结合第二问的巧妙设置,自然而然地引出了函数的定义。这种由浅入深、循序渐进的讲解方式,符合学生的认知规律,能够帮助学生更好地理解函数这一重要概念。紧接着,在“新知应用”环节,针对刚学的函数概念进行辨析和巩固。通过精心设计的练习题,引导学生深入思考,进一步阐述函数的性质,帮助学生从不同角度理解函数的内涵。随后,课件再次回到“新知讲解”,详细介绍函数值和函数解析式的概念,使学生对函数的认识更加全面、深入,构建起完整的函数知识框架。“典例讲解”部分精心挑选了几个具有代表性的练习题进行详细讲解。通过这些典型例题的分析和解答,进一步加深学生对函数概念的理解,同时对函数进行分类讲解,帮助学生掌握不同类型函数的特点和性质,培养学生分析问题、解决问题的能力,使学生能够更好地运用所学知识解决实际问题。“变式训练”环节是课件的一大亮点,通过设计多样化的变式题目,锻炼学生的举一反三能力。这些变式题目在形式和难度上有所变化,但都围绕着函数的核心概念展开,旨在引导学生从不同角度思考问题,培养学生的发散性思维和创新思维能力,帮助学生灵活运用所学知识,提高解题的准确性和效率,使学生在面对不同类型的题目时能够游刃有余。“当堂测试”部分包括选择题、计算题等多种题型,全面考察学生对本节课知识的掌握情况。通过当堂测试,教师可以及时了解学生的学习效果,发现学生在学习过程中存在的问题和薄弱环节,以便在后续教学中进行针对性的辅导和强化训练。同时,当堂测试也能让学生对自己的学习情况有一个清晰的认识,及时调整学习方法和策略,查漏补缺,进一步巩固所学知识。“小结梳理”板块对本节课学习的内容进行全面总结,如函数的概念、函数值、函数解析式等。通过简洁明了的语言,帮助学生梳理知识脉络,回顾重点知识,使学生对本节课的学习内容有一个系统的认识,进一步加深对知识的理解和记忆,构建完整的知识体系,为后续学习奠定坚实基础。最后是“布置作业”环节,精心设计的作业题目旨在巩固学生在课堂上所学的知识,引导学生在课后进行自主学习和思考。适量的作业既能帮助学生巩固知识,又不会给学生带来过重的学习负担。通过课后作业,学生可以进一步拓展思维,加深对函数知识的理解和应用,培养学生的自主学习能力和独立思考能力,使学生能够将课堂所学知识运用到实际生活中,提升数学素养。整套PPT课件模板以清晰的结构、丰富的内容和科学的教学设计,为八年级数学教学提供了有力支持。它通过层层递进的知识讲解、多样化的练习设计和有效的教学环节安排,帮助学生深入理解函数这一重要概念,培养学生的数学思维能力和解决问题的能力,提升学生的数学综合素质,是一套实用性强、教学效果显著的优质课件模板。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关部编版四年级语文《记一次游戏》课件的相关内容,共计15张幻灯片。PPT模板内容第一部分主要向我们详细的介绍了有关情景导入的内容,主要通过问学生喜欢什么样的游戏来引入今天课程的主题。第二部分主要向我们详细的讲述了有关盲人敲鼓游戏的内容。最后一部分主要向我们详细的展示了有关习作范例和课堂小结的内容。
PPT全称是PowerPoint,麦克素材网为你提供课件一次函数PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。