这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生一方面能够综合运用提公因式法和平方差公式对多项式进行因式分解,另一方面能够运用平方差公式进行因式分解并体会转化思维。第二部分内容是探究新知,这一部分主要包括用平方差公式进行因式分解、多次因式分解、利用因式分解求整式的值。第三部分内容是课堂检测,这一部分一方面展示了五道基础巩固题,另一方面是对能力提升题和拓广探索题进行展示。第四部分内容是课堂小结和课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对因式分解的两种方法进行介绍。第二部分内容是素养目标,学生首先能够综合运用提公因式和完全平方公式分解因式进行求值和证明,其次可以运用完全平方公式分解因式,最后能够理解完全平方公式的特点。第三部分内容是探究新知,这一部分主要包括用完全平方公式分解因式、做题简记口诀、用完全平方公式求字母的值。第四部分内容是课堂检测,包括基础巩固题和能力提升题。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于人教版数学八年级上册学习课件的相关内容。PPT模板内容第一部分主要向同学们详细的讲解了本节课的知识重点以及学习目标等等内容。第二部分主要向同学们详细的讲解了有关于分式的乘除法法则。第三部分主要向同学们详细的讲解了利用乘除法法则解题的相关内容。第四部分主要是有关于探究新知的具体内容。第五部分主要是有关于分式乘除法法则的归纳和总结。
PPT模板内容主要通过PowerPoint软件分几个部分来向我们展开介绍有关于分式运算法则的具体内容。PPT模板内容第一部分主要是有关于分式运算法则的学习目标和探究新知的具体内容。第二部分主要向同学们详细的讲解了有关于分式乘除混合运算的相关内容。第三部分主要向同学们详细的讲解了有关于分式乘除混合运算的题型。第四部分主要是有关于巩固练习的相关内容。最后一部分是有关于本节课的学习小结。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板通过相关数学题目来导入所学知识。第二部分内容是素养目标,学生首先能够了解解分式方程根需要进行验证的原因,其次会用去分母的方法解可化为一元一次方程的简单的分式方程,最后能够了解分式方程的概念。第三部分内容是探究新知,这一部分主要包括分式方程的概念和特征、解分式方程的方法和检验方法、解含有整式项的分式方程。第四部分内容是归纳总结和巩固练习。
这份PPT由四个部分组成。第一部分内容是导入新知和素养目标,学生首先能够掌握解题的基本步骤和要求,其次会解含有字母系数的分式方程,最后能找出实际问题中的等量关系。第二部分内容是探究新知,这一部分主要包括列分式方程解应用题的步骤、利用分式方程解答工程和行程问题、用分式方程的根求字母的值或取值范围。第三部分内容是课堂检测,这一部分一方面展示了两道基础巩固题,另一方面是对能力提升题和拓广探索题进行展示。第四部分内容是课堂小结和课后作业。
这份PowerPoint由四个部分构成。第一部分内容是导入新知,该模板首先对三类三角形的特点进行展示。第二部分内容是素养目标,这一部分一方面要学会运用三角形内角和定理进行计算,另一方面要学会用平行线的性质与平角的定义证明三角形内角和等于180度。第三部分内容是探究新知,这一部分主要包括三角形的内角和定理的证明和变式题。第四部分内容是巩固练习和归纳总结。
这份PPT由四个部分组成。第一部分内容是导入新知和目标素养。第二部分内容是探究新知,这一部分首先展示了与直角三角形的两个锐角相关的两个问题,其次对直角三角形的性质定理进行归纳总结,最后展示了与直角三角形性质有关的考点。第三部分内容是巩固练习,这一部分主要展示了三道习题。第四部分内容是链接中考和课堂检测,其中包括基础巩固题和能力提升题。
这是一套专为人教版数学八年级上册18.1.2《分式的基本性质(第1课时)》设计的PPT课件,共包含28张幻灯片。本节课的目的是帮助学生理解并掌握分式的基本性质,明确其与分数基本性质的联系与区别。通过本节课的学习,学生将经历“观察—类比—猜想—验证—归纳”的过程,推导分式的基本性质,培养他们的逻辑推理与抽象概括能力。该PPT从八个方面展开本节课程的学习。第一部分是“复习引入”。在这一部分中,教师通过复习分式的概念,帮助学生巩固已学知识,从而自然地引出本节课的学习主题——分式的基本性质。通过复习,学生能够更好地衔接新旧知识,为深入学习做好准备。第二部分是“合作探究”。在这一部分中,教师通过设计思考环节,引导学生从具体问题中探索分式的基本性质。通过小组合作和讨论,学生能够积极参与到学习过程中,培养他们的合作能力和探究精神。这一环节不仅帮助学生理解分式的基本性质,还能提高他们的自主学习能力。第三部分是“典例分析”。在这一部分中,教师通过具体的例题,详细分析分式基本性质的应用。通过逐步讲解和示范,学生能够更好地掌握分式基本性质的运用方法,提高解题能力。这一环节通过具体实例,帮助学生将理论知识转化为实际操作能力。第四部分是“巩固练习”。在这一部分中,教师提供了一系列的练习题,帮助学生巩固所学知识。通过多样化的练习,学生能够加深对分式基本性质的理解,提高应用能力。这一环节通过大量的练习,帮助学生熟练掌握分式的基本性质。第五部分是“归纳总结”。在这一部分中,教师通过表格的形式,帮助学生回顾复习本节课的相关知识。通过系统的总结,学生能够清晰地掌握分式的基本性质及其应用,为后续的学习打下坚实的基础。这一环节通过归纳总结,帮助学生梳理知识脉络,巩固所学内容。第六部分是“感受中考”。在这一部分中,教师通过展示中考真题或模拟题,让学生提前感受中考的难度和题型。通过这一环节,学生能够更好地了解中考的要求,提高应试能力。这一环节通过实际的中考题目,帮助学生将所学知识与考试要求相结合。第七部分是“小结梳理”。在这一部分中,教师引导学生回顾本节课的重点内容,帮助学生梳理知识脉络。通过小结,学生能够巩固所学知识,加深对分式基本性质的理解。这一环节通过回顾和梳理,帮助学生系统地掌握本节课的知识点。第八部分是“布置作业”。在这一部分中,教师布置适量的作业,帮助学生进一步巩固和深化所学知识。通过作业,学生能够独立思考和解决问题,提高数学素养。这一环节通过作业,帮助学生巩固课堂所学,提升自主学习能力。通过这八个部分的学习,学生不仅能够深入理解分式的基本性质,还能提高他们的数学思维能力和解题能力。这种综合性的教学设计,不仅符合八年级学生的认知特点,还能有效激发他们的学习兴趣,使他们在学习中获得知识的同时,也能在思维上得到提升。
这是一套专为人教版数学八年级上册18.1.2《分式的基本性质(第2课时)》设计的PPT课件,共包含31张幻灯片。本节课的目的是帮助学生理解分式通分的概念,掌握确定最简公分母的方法。通过本节课的学习,学生将经历“类比分数通分—探究分式通分—归纳通分步骤”的过程,培养他们的类比迁移与归纳总结能力。该PPT从八个方面展开本节课程的学习。第一部分是“复习引入”。在这一部分中,教师帮助学生回顾分式的基本性质,并引导学生用符号表示分式的基本性质。通过复习,学生能够更好地衔接新旧知识,为深入学习做好准备,自然地引出本节课的学习主题——分式的通分。第二部分是“合作探究”。在这一部分中,教师通过设计具体的探究活动,引导学生从分数通分类比到分式通分。通过小组合作和讨论,学生能够积极参与到学习过程中,培养他们的合作能力和探究精神。这一环节不仅帮助学生理解分式通分的概念,还能提高他们的自主学习能力。第三部分是“典例分析”。在这一部分中,教师通过具体的例题,详细分析分式的约分与通分的应用。通过逐步讲解和示范,学生能够更好地掌握分式通分的具体步骤和方法,提高解题能力。这一环节通过具体实例,帮助学生将理论知识转化为实际操作能力。第四部分是“巩固练习”。在这一部分中,教师提供了一系列的练习题,帮助学生巩固所学知识。通过多样化的练习,学生能够加深对分式通分的理解,提高应用能力。这一环节通过大量的练习,帮助学生熟练掌握分式通分的方法。第五部分是“归纳总结”。在这一部分中,教师通过表格的形式,帮助学生回顾复习本节课的相关知识。通过系统的总结,学生能够清晰地掌握分式通分的概念、方法和步骤,为后续的学习打下坚实的基础。这一环节通过归纳总结,帮助学生梳理知识脉络,巩固所学内容。第六部分是“感受中考”。在这一部分中,教师通过展示中考真题或模拟题,让学生提前感受中考的难度和题型。通过这一环节,学生能够更好地了解中考的要求,提高应试能力。这一环节通过实际的中考题目,帮助学生将所学知识与考试要求相结合。第七部分是“小结梳理”。在这一部分中,教师引导学生回顾本节课的重点内容,帮助学生梳理知识脉络。通过小结,学生能够巩固所学知识,加深对分式通分的理解。这一环节通过回顾和梳理,帮助学生系统地掌握本节课的知识点。第八部分是“布置作业”。在这一部分中,教师布置适量的作业,帮助学生进一步巩固和深化所学知识。通过作业,学生能够独立思考和解决问题,提高数学素养。这一环节通过作业,帮助学生巩固课堂所学,提升自主学习能力。通过这八个部分的学习,学生不仅能够深入理解分式通分的概念和方法,还能提高他们的数学思维能力和解题能力。这种综合性的教学设计,不仅符合八年级学生的认知特点,还能有效激发他们的学习兴趣,使他们在学习中获得知识的同时,也能在思维上得到提升。
这是一套专为人教版数学八年级上册18.2《分式的乘法与除法(第1课时)》设计的PPT课件,共包含32张幻灯片。本节课的目的是帮助学生理解并掌握分式乘法法则的推导过程。通过本节课的学习,学生将在法则推导中感受数学知识的连贯性,激发探究代数运算规律的兴趣,培养严谨的思维习惯,提升对数学运算准确性的重视程度。该PPT从八个方面展开本节课程的学习。第一部分是“复习引入”。在这一部分中,教师通过复习已学的分式基本性质和相关知识,帮助学生巩固基础,为新知识的学习做好铺垫。通过复习,学生能够更好地衔接新旧知识,自然地过渡到本节课的学习主题——分式的乘法。第二部分是“合作探究”。在这一部分中,教师通过设计具体的探究活动,引导学生从分数乘法类比到分式乘法。通过小组合作和讨论,学生能够积极参与到学习过程中,培养他们的合作能力和探究精神。这一环节不仅帮助学生理解分式乘法的概念,还能提高他们的自主学习能力。第三部分是“典例分析”。在这一部分中,教师通过具体的例题,详细分析分式乘法的应用。通过逐步讲解和示范,学生能够更好地掌握分式乘法的具体步骤和方法,提高解题能力。这一环节通过具体实例,帮助学生将理论知识转化为实际操作能力。第四部分是“巩固练习”。在这一部分中,教师提供了一系列的练习题,帮助学生巩固所学知识。通过多样化的练习,学生能够加深对分式乘法的理解,提高应用能力。这一环节通过大量的练习,帮助学生熟练掌握分式乘法的方法。第五部分是“归纳总结”。在这一部分中,教师通过表格的形式,帮助学生回顾复习本节课的相关知识。通过系统的总结,学生能够清晰地掌握分式乘法的概念、方法和步骤,为后续的学习打下坚实的基础。这一环节通过归纳总结,帮助学生梳理知识脉络,巩固所学内容。第六部分是“感受中考”。在这一部分中,教师通过展示中考真题或模拟题,让学生提前感受中考的难度和题型。通过这一环节,学生能够更好地了解中考的要求,提高应试能力。这一环节通过实际的中考题目,帮助学生将所学知识与考试要求相结合。第七部分是“小结梳理”。在这一部分中,教师引导学生回顾本节课的重点内容,帮助学生梳理知识脉络。通过小结,学生能够巩固所学知识,加深对分式乘法的理解。这一环节通过回顾和梳理,帮助学生系统地掌握本节课的知识点。第八部分是“布置作业”。在这一部分中,教师布置适量的作业,帮助学生进一步巩固和深化所学知识。通过作业,学生能够独立思考和解决问题,提高数学素养。这一环节通过作业,帮助学生巩固课堂所学,提升自主学习能力。通过这八个部分的学习,学生不仅能够深入理解分式乘法的概念和方法,还能提高他们的数学思维能力和解题能力。这种综合性的教学设计,不仅符合八年级学生的认知特点,还能有效激发他们的学习兴趣,使他们在学习中获得知识的同时,也能在思维上得到提升。
这是一套专为人教版数学八年级上册18.3《分式的加法与减法(第1课时)》设计的PPT课件,共包含27张幻灯片。本节课旨在帮助学生理解同分母分式加减法法则的推导过程,并掌握“分母不变,分子相加减”的核心运算方法。通过本节课的学习,学生将经历从分数运算到分式猜想,再到验证推导和归纳法则的过程,进一步培养他们的类比迁移与逻辑推理能力。该PPT从八个方面展开本节课程的学习。首先,在“复习引入”部分,教师通过引导学生回顾分式的乘方、分式的乘除以及乘方混合运算的运算顺序,帮助学生巩固已学知识,为新知识的学习做好铺垫。这种复习方式不仅帮助学生温故知新,还自然地引出了本节课的学习主题——同分母分式的加减法。接下来是“合作探究”环节,教师通过设计具体的探究活动,引导学生从熟悉的分数运算类比到分式的加减法。通过小组合作和讨论,学生能够积极参与到学习过程中,培养他们的合作能力和探究精神。这一环节不仅帮助学生理解同分母分式加减法的概念,还能提高他们的自主学习能力。在“典例分析”部分,教师通过具体的例题,详细分析同分母分式加减法的应用。通过逐步讲解和示范,学生能够更好地掌握“分母不变,分子相加减”的核心运算方法,提高解题能力。这一环节通过具体实例,帮助学生将理论知识转化为实际操作能力。“巩固练习”部分提供了丰富的练习题,帮助学生巩固所学知识。通过多样化的练习,学生能够加深对同分母分式加减法的理解,提高应用能力。这一环节通过大量的练习,帮助学生熟练掌握同分母分式加减法的方法。在“归纳总结”部分,教师通过表格的形式,帮助学生回顾复习本节课的相关知识。通过系统的总结,学生能够清晰地掌握同分母分式加减法的概念、方法和步骤,为后续的学习打下坚实的基础。这一环节通过归纳总结,帮助学生梳理知识脉络,巩固所学内容。“感受中考”部分通过展示中考真题或模拟题,让学生提前感受中考的难度和题型。通过这一环节,学生能够更好地了解中考的要求,提高应试能力。这一环节通过实际的中考题目,帮助学生将所学知识与考试要求相结合。在“小结梳理”部分,教师引导学生回顾本节课的重点内容,帮助学生梳理知识脉络。通过小结,学生能够巩固所学知识,加深对同分母分式加减法的理解。这一环节通过回顾和梳理,帮助学生系统地掌握本节课的知识点。最后,在“布置作业”部分,教师布置适量的作业,帮助学生进一步巩固和深化所学知识。通过作业,学生能够独立思考和解决问题,提高数学素养。这一环节通过作业,帮助学生巩固课堂所学,提升自主学习能力。通过这八个部分的学习,学生不仅能够深入理解同分母分式加减法的概念和方法,还能提高他们的数学思维能力和解题能力。这种综合性的教学设计,不仅符合八年级学生的认知特点,还能有效激发他们的学习兴趣,使他们在学习中获得知识的同时,也能在思维上得到提升。
这是一套专为人教版数学八年级上册第18章“分式方程”(第1课时)精心设计的PPT课件,共包含31张幻灯片。本节课的核心目标是帮助学生深入理解分式方程的概念,掌握解分式方程的基本步骤,并了解分式方程可能产生增根的原因。通过本节课的学习,学生将被引导自主探究分式方程的解法,同时培养他们的合作能力和探究精神。该PPT课件从八个方面展开教学内容。第一部分是情境引入,通过创设具体的情境,引导学生回顾已学知识,自然地引出分式方程的概念,激发学生的学习兴趣。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨分式方程的解法,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过分析具体例题,帮助学生更好地理解和掌握分式方程的解法,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生在实践中巩固所学知识,加深对分式方程的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的课后作业,帮助学生及时回顾复习本节课的知识点,加强对知识点的理解和记忆,进一步巩固学习成果。
这是一套专为人教版数学八年级上册第18章“分式方程”(第2课时)设计的PPT课件,共包含22张幻灯片。本节课的核心目标是帮助学生巩固分式方程的解法,并掌握分式方程在实际问题中的应用。学生将学会根据实际问题列出分式方程并求解,同时通过本节课的学习,引导学生自主探究分式方程在实际中的应用,培养他们解决实际问题的能力。该PPT课件从八个方面展开教学内容。第一部分是复习引入,通过图文结合的方式,帮助学生回顾解分式方程的基本步骤,为本节课的学习做好铺垫。第二部分是合作探究,鼓励学生通过小组合作的方式,共同探讨分式方程在实际问题中的应用,培养学生的团队协作能力和自主探究能力。第三部分是典例分析,通过分析具体例题,帮助学生更好地理解和掌握分式方程在实际问题中的应用方法,提高学生对知识的应用能力。第四部分是巩固练习,通过有针对性的练习题,让学生在实践中巩固所学知识,加深对分式方程在实际问题中应用的理解和运用。第五部分是归纳总结,采用表格的形式,清晰地呈现本节课的重点知识,帮助学生系统地回顾和复习,强化记忆。第六部分是感受中考,展示一些与本节课内容相关的中考题,让学生提前熟悉中考题型,了解中考命题方向,增强学生应对中考的信心。第七部分是小结梳理,对本节课的知识点进行再次梳理和总结,帮助学生构建完整的知识体系。第八部分是布置作业,通过布置适量的课后作业,帮助学生及时回顾复习本节课的知识点,加强对知识点的理解和记忆,进一步巩固学习成果。通过这套PPT课件,学生不仅能够巩固分式方程的解法,还能学会如何将分式方程应用于实际问题中,培养他们的数学思维和解决实际问题的能力。
此PPT模板首先通过复习回顾的方式引导学生解答数的排列问题和组合问题,同时还介绍了解题方法、注意事项以及他们两者之间的区别。第二部分是强化巩固部分,主要通过展示学生课本当中原有的练习题来帮助学生检测掌握情况并且及时发现学生学习的难点。第三部分是课堂小结部分,主要让学生对如何解决数的排列问题以及对排列问题与组合问题的区别进行总结。第四部分是课后作业部分。
这份共七十九页的复习课件,为北师大版八年级上册第四章《一次函数》量身定制,以“框架—缺口—补缺—实战”四部曲,帮学生在有限时间内把零散知识织成网、把易错点变得分点。课堂沿“六步闭环”推进:目标导航—图谱建网—考点速通—题型破拆—针对训练—总结提升。开篇“单元复习目标”用双色雷达图直击要害:重点侧写明“能辨一次函数、会画图像、会用性质解实际问题”;难点侧聚焦“含参解析式求范围、图像平移与几何综合”,让学生抬头便知复习靶心。“单元知识图谱”以可缩放思维导图呈现三大主干——“概念”下设定义、自变量取值、与正比例区别;“图像与性质”拆成斜率k、截距b、平移规律、两直线位置关系;“应用”涵盖计费、行程、方案比较、交点决策。节点留空,学生用电子笔现场填充典型错题或提醒,教师一键保存,生成“班级复习云图”,实现知识个性化再建构。“考点串讲”采用表格+动画双通道:左侧列考点,右侧配“易错闪电标”,如“k相同必平行,b不同才相错”“平移口诀:上+b下-b,左+x右-x”等,每点配3秒Gif演示,30秒过完一个考点,既高效又吸睛。“题型剖析”精选月考失分高频五类:判断一次函数、求参数范围、图像平移、交点实际问题、方案择优。每类配“母题”+“子题”,用“错因→正解→变式”三段式拆解,学生用点赞贴投票“最惨痛病例”,在笑声中警醒。“针对训练”分层推送:A层在线判断快速抢答,系统即时红绿反馈;B层给出“阶梯水费”情境,要求写分段解析式并画图像;C层引入中考真题,要求用两种方法求“两车相遇又相距”的时刻,平板实时生成“掌握度曲线”,教师依据数据现场开“微门诊”。结课“课堂总结”用30秒“电梯演讲”——每人说一个今天补齐的知识漏洞,弹幕滚成词云;作业分两层:A层完成教材单元复习题,B层拍摄生活视频,找出“一次函数”场景,测数据、写模型、做预测,把复习成果带回家。整套课件通过“目标定向—图谱织网—错因曝光—精准训练”的闭环,不仅让学生把“辨式、画图、用性、建模”做得又快又准,更在“自查—互学—展示”的反复体验中,提升合作意识与策略思维,为后续二次函数、综合实践奠定坚实的方法、能力与信心三重基础。
这份共十六张的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第2课时“一次函数与正比例函数”量身打造,以“从特殊到一般、从感知到符号”为脉络,帮助学生在短短一节课内完成“认识正比例—提炼一次—写出解析式”的三级跳。课堂流程简洁而递进:温故复习—情境导入—新知探究—典例巩固—课堂小结。 开篇“温故复习”用30秒快闪:函数定义、三种表示法(解析式、表格、图像)依次闪过,学生抢答关键词“唯一对应”,教师随即板书,为后续“一次函数也是函数”奠定逻辑起点。 “情境导入”贴近学生日常:手机导航显示“匀速行驶,每公里油耗0.08升”,屏幕动态呈现里程表与油量表同步下降,学生记录“行驶里程x”与“剩余油量y”对应数据,发现每增加1公里,油量减少0.08升,变化量恒定,教师顺势点拨“当x=0时,y=油箱容量”,引出y=kx+b(k≠0)的一般形式,并强调“b可不为0”即一次函数,“b=0”则退化为正比例函数,特殊与一般的关系一目了然。 “新知探究”借助课本例题“弹簧伸长量与所挂砝码质量”展开:学生分组测量数据,计算“每多50克,伸长0.5厘米”的固定变化率,填写表格并描点连线,GeoGebra同步生成直线,直观感受“斜率k即变化率、截距b即原长”,随后归纳求解析式三步法:找变化率→定k→代入任一点求b。 “典例巩固”采用“一题多变”:同一背景“共享单车押金与骑行费用”分别给出表格、图像、文字三种信息,学生抢列解析式并预测骑行10公里的费用,平板实时呈现正确率,教师针对最低得分点即时二次讲解;随后推送两道中考真题切片,要求学生判断函数类型并写出关系式,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:正比例函数→一次函数→斜率k→截距b四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用水量与水费关系,记录数据并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“正比例函数是一次函数的特殊情况”,更在“列表—写式—画图—预测”的实战中,为后续学习函数图像性质、实际应用及模型思想奠定坚实的概念与技能双重根基。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这份共二十一张幻灯片的PPT课件,专为北师大版八年级上册第四章《4.1 函数》量身定制,以“从生活现象中捕捉变化规律”为切入口,引导学生完成从“感性认识变量”到“抽象定义函数”的第一次跨越。课堂流程简洁而递进:情境导入—探究新知—典例巩固—课堂小结。 开篇“情境导入”用日常短视频串烧:自动扶梯的梯级高度与时间、加油机金额与油量、气温与海拔,三组画面同步滚动,学生边看边记录“谁跟着谁变”,教师追问“一个量确定后,另一个量是否唯一确定?”生活事例瞬间聚焦到“对应”这一核心。 “探究新知”分三步走:先给出函数描述性定义,强调“唯一对应”关键词;再借助箭头图、解析式、表格三种方式呈现同一关系,让学生直观感受函数的多元表征;最后通过“分式型、根式型、零次幂型”三类表达式,归纳求自变量取值范围的“三把钥匙”——分母不为零、偶根非负、零次底非零,每把钥匙配一道即时口答,错误答案瞬间红显,强化记忆。 “典例巩固”采用“一题多变”:同一背景“汽车匀速行驶”分别用表格、解析式、图像给出,学生抢答自变量范围并计算函数值,平板自动生成正确率柱形图,教师针对最低得分点二次讲解;随后推送两道中考真题切片,要求学生判断是否为函数关系并说明理由,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:定义、表示、求范围、求函数值四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层拍摄生活短视频,指出其中的自变量与函数关系并配文说明,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“视觉冲击—多元表征—即时反馈”的闭环设计,不仅让学生真正理解“函数就是对应”,更在“找范围、求值、判断关系”的实战中,为后续学习一次函数、二次函数奠定坚实的概念与技能双重根基。
PPT全称是PowerPoint,麦克素材网为你提供青岛办八年级上册数学第一章思维导图PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。