Word格式/内容可修改
解析:观察这组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,故这组数的第n个数为2n-1(n+1)2.方法总结:解答此类问题要从所给的一些特殊数字中找出其中的变化规律,进而根据规律归纳总结出一般性的结论.探究点二:数阵(表)规律问题如图所示是一个按规律排列的数表,请用含n的代数式(n为正整数)表示数表中第n行第n列的数.解析:观察数表可知:第一行第一列至第四行第四列的数依次为1,3,7,13,对这些数字作分解、组合如下:第一行第一列:1=0×1+1;第二行第二列:3=1×2+1;第三行第三列:7=2×3+1;第四行第四列:13=3×4+1;……由此可以发现,所分解的式子乘积中的第1个因数为行(列)数减1,第2个因数恰为行(或列)数.所以第n行第n列的数是(n-1)n+1.方法总结:在认真观察、分析的基础上,将数或式中的有关数字进行分解、组合变形,从中探索变化规律是解决此类问题的关键.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231112143430926.html