Word格式/内容可修改
解析:欲证明四边形CEDF是正方形,先根据∠C=90°,DE⊥BC,DF⊥AC,证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:如图所示,过点D作DG⊥AB于点G.∵DF⊥AC,DE⊥BC,∴∠DFC=∠DEC=90°.又∠C=90°,∴四边形CEDF是矩形(有三个角是直角的四边形是矩形).∵AD平分∠BAC,DF⊥AC,DG⊥AB,∴DF=DG.同理可得DE=DG.∴DE=DF.∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).方法总结:正方形的判定方法有很多,可以先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直;或先证明它是菱形,再证明它有一个角是直角或对角线相等.【类型二】 先证明是菱形再证明是正方形如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.解析:已知EG⊥FH,要证四边形EFGH为正方形,则只需要证四边形的对角线EG,HF互相平分且相等即可,根据题意可通过三角形全等来证OE=OH=OG=OF.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231120102058271.html