Word格式/内容可修改
如图,在△ABC中,AB=5,AC=3,点N为BC的中点,AM平分∠BAC,CM⊥AM,垂足为点M,延长CM交AB于点D,求MN的长.解析:为证MN为△BCD的中位线,应根据三线合一,得到DM=MC,即可解决问题.解:∵AM平分∠BAC,CM⊥AM,∴AD=AC=3,DM=CM.∵BN=CN,∴MN为△BCD的中位线,∴MN=12(5-3)=1.方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.如已知一个三角形一边上的高又是这边所对的角平分线时,根据“三线合一”可知,这实际上是又告诉了我们一个中点.【类型四】 中位线定理的综合应用如图,E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231118104834722.html