Word格式/内容可修改
解析:由方程5x2+kx-6=0可知二次项系数和常数项,所以可根据两根之积求出方程另一个根,然后根据两根之和求出k的值.解:设方程的另一个根是x1,则2x1=-65,∴x1=-35.又∵x1+2=-k5,∴-35+2=-k5,∴k=-7.方法总结:对于一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),当已知二次项系数和常数项时,可求得方程的两根之积;当已知二次项系数和一次项系数时,可求得方程的两根之和.【类型三】 判别式及根与系数关系的综合应用已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=-1,求m的值.解析:利用韦达定理表示出α+β,αβ,再由1α+1β=-1建立方程,求解m的值.解:∵α、β是方程的两个不相等的实数根,∴α+β=-(2m+3),αβ=m2.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231119153148620.html