Word格式/内容可修改
四边形ODAF是正方形.设OD=AD=AF=r,则BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC=AB2+AC2=22.又∵BC=BE+CE,∴(2-r)+(2-r)=22,得r=2-2,∴⊙O的半径是2-2 .方法总结:本题综合考查了正方形的判定以及切线长定理和勾股定理等知识,解决问题的关键是得出四边形ODAF是正方形.【类型六】 利用切线长定理解决存在性问题如图①,已知正方形ABCD的边长为23,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?(2)求四边形CDPF的周长;(3)延长CD,FP相交于点G,如图②所示.是否存在点P,使BF·FG=CF·OF?如果存在,试求此时AP的长;如果不存在,请说明理由.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231120132649286.html