Word格式/内容可修改
解析:(1)利用切线的性质及圆周角定理证明;(2)利用相似三角形证明;(3)利用正方形的性质证明.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=BE.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径, ∴∠ADC=∠ACB=∠BDC=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD·BA;(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=180°-∠ADC-∠OCD=180°-90°-45°=45°,∴Rt△ABC为等腰直角三角形.方法总结:本题的综合性比较强,但难度不大,解决问题的关键是综合运用学过的知识解答.另外,连接圆心和切点,构造直角三角形也是解题的关键.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231120144153329.html