Word格式/内容可修改
同理可得∠ACB=90°.又∵∠ABH+∠FBA=180°,∠4=12∠ABH,∠2=12∠FBA,∴∠2+∠4=12(∠ABH+∠FBA)=12×180°=90°,即∠DBC=90°.∴四边形ADBC是矩形.方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.探究点三:有一个角是直角的平行四边形是矩形如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.(1)BD与DC有什么数量关系?请说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.解析:(1)根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形三线合一的性质可知△ABC满足的条件必须是AB=AC.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231119130106211.html