Word格式/内容可修改
①根据题意得,两圆的半径分别为r1=1和r2=4,两圆的圆心距d=√("[" 2"-(-" 2")" "]" ^2+"(" 5"-" 2")" ^2 )=5.因为d=r1+r2,所以两圆外切.②将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36,故两圆的半径分别为r1=4和r2=6.两圆的圆心距d=√("[" 0"-(-" 3")" "]" ^2+"(-" 3"-" 0")" ^2 )=3√2,因为|r1-r2|0),圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含?思路分析:求出圆心距,与两半径的和或差比较求出a的值.解:圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.∴|C1C2|=√("(" a"-" 2a")" ^2+"(" 1"-" 1")" ^2 )=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当35,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.判断两圆的位置关系的两种方法(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系;(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.
转载请注明出处!本文地址:
https://www.mikeppt.com/wd/20231027110459957.html